HEAL DSpace

Gaussian smoothing strategy of thermogravimetric data of biomass materials in an air atmosphere

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Liu, N en
dc.contributor.author Chen, H en
dc.contributor.author Shu, L en
dc.contributor.author Zong, R en
dc.contributor.author Yao, B en
dc.contributor.author Statheropoulos, M en
dc.date.accessioned 2014-03-01T01:20:33Z
dc.date.available 2014-03-01T01:20:33Z
dc.date.issued 2004 en
dc.identifier.issn 0888-5885 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15957
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-3242717666&partnerID=40&md5=b8593dc110e8f6cbca4b2cf59d38c646 en
dc.subject.classification Engineering, Chemical en
dc.subject.other Algorithms en
dc.subject.other Atmospheric composition en
dc.subject.other Parameter estimation en
dc.subject.other Reaction kinetics en
dc.subject.other Thermogravimetric analysis en
dc.subject.other Gaussian smoothing en
dc.subject.other Kinetic parameters en
dc.subject.other Biomass en
dc.subject.other air en
dc.subject.other air en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other atmosphere en
dc.subject.other biomass en
dc.subject.other decomposition en
dc.subject.other differential thermogravimetric curve en
dc.subject.other Gaussian smoothing en
dc.subject.other kinetics en
dc.subject.other mathematical optimum range en
dc.subject.other normal distribution en
dc.subject.other simulation en
dc.subject.other statistical analysis en
dc.subject.other statistical parameters en
dc.subject.other thermogravimetry en
dc.title Gaussian smoothing strategy of thermogravimetric data of biomass materials in an air atmosphere en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2004 en
heal.abstract In differential analysis, noises may induce high fluctuations in the differential thermogravimetric curve (DTG) curve and thereby induce considerable errors in the evaluation of kinetic parameters. This paper studies the strategy of using the Gaussian smoothing algorithm in the pretreatment of biomass decomposition data. Special attention is paid to the choice of the smoothing parameter a in both mathematical and kinetic senses. A mathematical optimum range (MOR), 3-5 less than or equal to a less than or equal to 10, is definitely suggested to achieve a high enough mathematical smoothing degree while keeping the data distortion at a low level. By simulation analysis, it is found that, in the range of MOR, lower values of a can achieve the best fit to the expected DTG peaks. The smoothing parameters within the central section of 3-10 are highly suggested to achieve the best kinetic parameter fitting. Higher values of a are required for the transition and end regions. A two-stage Gaussian smoothing strategy for biomass decomposition data is formally proposed. The effect of noises upon the differential methods is analyzed, and it is addressed that the choice of smoothing parameters should be considered in connection with the features of kinetic analysis methods. en
heal.publisher AMER CHEMICAL SOC en
heal.journalName Industrial and Engineering Chemistry Research en
dc.identifier.isi ISI:000222738000011 en
dc.identifier.volume 43 en
dc.identifier.issue 15 en
dc.identifier.spage 4087 en
dc.identifier.epage 4096 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής