HEAL DSpace

Generalized gradients of monotone type

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Dodos, P en
dc.date.accessioned 2014-03-01T01:20:33Z
dc.date.available 2014-03-01T01:20:33Z
dc.date.issued 2004 en
dc.identifier.issn 0362-546X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15960
dc.subject Generalized gradients en
dc.subject Operators of type (M) en
dc.subject Operators of type (S)+ en
dc.subject Pseudomonotone operators en
dc.subject Quasi-convexity en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other Functions en
dc.subject.other Gradient methods en
dc.subject.other Mathematical operators en
dc.subject.other Set theory en
dc.subject.other Theorem proving en
dc.subject.other Topology en
dc.subject.other Generalized gradients en
dc.subject.other Pseudomonotone operators en
dc.subject.other Nonlinear equations en
dc.title Generalized gradients of monotone type en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.na.2003.09.007 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.na.2003.09.007 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract We examine the properties of the subdifferential in the sense of Clarke of certain locally Lipschitz, quasi-convex functions. We prove that, even if they may not possess a pseudomonotone-type subdifferential, if we consider the operator A + partial derivativef, where A is an operator of type (S)(+), then the sum is pseudomonotone. A new type of subdifferential for Lipschitz functions is also presented. We prove some calculus rules and we establish that in the context of reflexive Banach spaces is an operator of type (M). (C) 2003 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Nonlinear Analysis, Theory, Methods and Applications en
dc.identifier.doi 10.1016/j.na.2003.09.007 en
dc.identifier.isi ISI:000188297900003 en
dc.identifier.volume 56 en
dc.identifier.issue 2 en
dc.identifier.spage 201 en
dc.identifier.epage 212 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής