dc.contributor.author |
Dodos, P |
en |
dc.date.accessioned |
2014-03-01T01:20:33Z |
|
dc.date.available |
2014-03-01T01:20:33Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15960 |
|
dc.subject |
Generalized gradients |
en |
dc.subject |
Operators of type (M) |
en |
dc.subject |
Operators of type (S)+ |
en |
dc.subject |
Pseudomonotone operators |
en |
dc.subject |
Quasi-convexity |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Gradient methods |
en |
dc.subject.other |
Mathematical operators |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Generalized gradients |
en |
dc.subject.other |
Pseudomonotone operators |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Generalized gradients of monotone type |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2003.09.007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2003.09.007 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We examine the properties of the subdifferential in the sense of Clarke of certain locally Lipschitz, quasi-convex functions. We prove that, even if they may not possess a pseudomonotone-type subdifferential, if we consider the operator A + partial derivativef, where A is an operator of type (S)(+), then the sum is pseudomonotone. A new type of subdifferential for Lipschitz functions is also presented. We prove some calculus rules and we establish that in the context of reflexive Banach spaces is an operator of type (M). (C) 2003 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2003.09.007 |
en |
dc.identifier.isi |
ISI:000188297900003 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
201 |
en |
dc.identifier.epage |
212 |
en |