HEAL DSpace

Generalized nonlinear relevance feedback for interactive content-based retrieval and organization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Doulamis, AD en
dc.contributor.author Doulamis, ND en
dc.date.accessioned 2014-03-01T01:20:33Z
dc.date.available 2014-03-01T01:20:33Z
dc.date.issued 2004 en
dc.identifier.issn 1051-8215 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15961
dc.subject Image retrieval en
dc.subject MPEG-7 en
dc.subject Relevance feedback en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algorithms en
dc.subject.other Approximation theory en
dc.subject.other Data reduction en
dc.subject.other Database systems en
dc.subject.other Feedback en
dc.subject.other Iterative methods en
dc.subject.other Matrix algebra en
dc.subject.other Multimedia systems en
dc.subject.other Parameter estimation en
dc.subject.other Sensitivity analysis en
dc.subject.other Average normalized modified retrieval rank (ANMRR) en
dc.subject.other Data ranking en
dc.subject.other MPEG-7 en
dc.subject.other Relevance feedback en
dc.subject.other Content based retrieval en
dc.title Generalized nonlinear relevance feedback for interactive content-based retrieval and organization en
heal.type journalArticle en
heal.identifier.primary 10.1109/TCSVT.2004.826752 en
heal.identifier.secondary http://dx.doi.org/10.1109/TCSVT.2004.826752 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract In this paper, a novel relevance feedback algorithm is proposed for improving the performance of interactive content-based retrieval systems. The algorithm recursively estimates the similarity measure, which is used for data ranking in description environments where similarity-based queries are applied, using a set of relevant/irrelevant samples feedback by the user to the system so that the adjusted response is a better approximation of the current user's information needs and preferences. In particular, using concepts of functional analysis, the similarity measure is expressed as a parametric form of known monotone increasing functional components. Then, the contribution of each functional component to the similarity measure is estimated through a recursive and efficient on-line learning algorithm so that: 1) the current user's needs and preferences, as indicated by a set of selected relevant/irrelevant samples, are satisfied as much as possible, while simultaneously 2) a minimal modification of the already estimated similarity measure is accomplished. Experimental results on a large real-life database using objective evaluation criteria, such as the precision-recall curve and the average normalized modified retrieval rank (ANMRR), indicate that the proposed scheme outperforms the compared ones. In addition, the proposed algorithm requires low computational complexity and it can be implemented in a recursive way. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Circuits and Systems for Video Technology en
dc.identifier.doi 10.1109/TCSVT.2004.826752 en
dc.identifier.isi ISI:000221237700009 en
dc.identifier.volume 14 en
dc.identifier.issue 5 en
dc.identifier.spage 656 en
dc.identifier.epage 671 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής