dc.contributor.author |
Doulamis, AD |
en |
dc.contributor.author |
Doulamis, ND |
en |
dc.date.accessioned |
2014-03-01T01:20:33Z |
|
dc.date.available |
2014-03-01T01:20:33Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1051-8215 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15961 |
|
dc.subject |
Image retrieval |
en |
dc.subject |
MPEG-7 |
en |
dc.subject |
Relevance feedback |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
Database systems |
en |
dc.subject.other |
Feedback |
en |
dc.subject.other |
Iterative methods |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Multimedia systems |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Sensitivity analysis |
en |
dc.subject.other |
Average normalized modified retrieval rank (ANMRR) |
en |
dc.subject.other |
Data ranking |
en |
dc.subject.other |
MPEG-7 |
en |
dc.subject.other |
Relevance feedback |
en |
dc.subject.other |
Content based retrieval |
en |
dc.title |
Generalized nonlinear relevance feedback for interactive content-based retrieval and organization |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TCSVT.2004.826752 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TCSVT.2004.826752 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper, a novel relevance feedback algorithm is proposed for improving the performance of interactive content-based retrieval systems. The algorithm recursively estimates the similarity measure, which is used for data ranking in description environments where similarity-based queries are applied, using a set of relevant/irrelevant samples feedback by the user to the system so that the adjusted response is a better approximation of the current user's information needs and preferences. In particular, using concepts of functional analysis, the similarity measure is expressed as a parametric form of known monotone increasing functional components. Then, the contribution of each functional component to the similarity measure is estimated through a recursive and efficient on-line learning algorithm so that: 1) the current user's needs and preferences, as indicated by a set of selected relevant/irrelevant samples, are satisfied as much as possible, while simultaneously 2) a minimal modification of the already estimated similarity measure is accomplished. Experimental results on a large real-life database using objective evaluation criteria, such as the precision-recall curve and the average normalized modified retrieval rank (ANMRR), indicate that the proposed scheme outperforms the compared ones. In addition, the proposed algorithm requires low computational complexity and it can be implemented in a recursive way. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Circuits and Systems for Video Technology |
en |
dc.identifier.doi |
10.1109/TCSVT.2004.826752 |
en |
dc.identifier.isi |
ISI:000221237700009 |
en |
dc.identifier.volume |
14 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
656 |
en |
dc.identifier.epage |
671 |
en |