dc.contributor.author |
Kavallaris, NI |
en |
dc.contributor.author |
Lacey, AA |
en |
dc.contributor.author |
Tzanetis, DE |
en |
dc.date.accessioned |
2014-03-01T01:20:34Z |
|
dc.date.available |
2014-03-01T01:20:34Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15966 |
|
dc.subject |
Asymptotic behaviour |
en |
dc.subject |
Comparison methods |
en |
dc.subject |
Global-unbounded solutions |
en |
dc.subject |
Non-local parabolic problems |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Diffusion |
en |
dc.subject.other |
Electric conductivity |
en |
dc.subject.other |
Electric currents |
en |
dc.subject.other |
Electric resistance |
en |
dc.subject.other |
Heating |
en |
dc.subject.other |
Set theory |
en |
dc.subject.other |
Asymptotic behavior |
en |
dc.subject.other |
Comparison methods |
en |
dc.subject.other |
Global-unbounded solutions |
en |
dc.subject.other |
Non-local parabolic problems |
en |
dc.subject.other |
Boundary value problems |
en |
dc.title |
Global existence and divergence of critical solutions of a non-local parabolic problem in Ohmic heating process |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2004.04.012 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2004.04.012 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We investigate the behaviour of some critical solutions of a non-local initial-boundary value problem for the equation u(t) = Deltau + lambdaf(u)/(integral(Omega)f(u)dx)(2), Omega subset of R-N, N = 1, 2. Under specific conditions on f, there exists a lambda* such that for each 0 < lambda < lambda* there corresponds a unique steady-state solution and u = u(x, t; lambda) is a global in time-bounded solution, which tends to the unique steady-state solution as t --> infinity uniformly in x. Whereas for lambda greater than or equal to lambda* there is no steady state and if lambda > lambda* then u blows up globally. Here, we show that when (a) N = 1, Omega = (-1, 1) and f(s) > 0, f'(s) < 0, s greater than or equal to 0, or (b) N = 2, Omega = B(0, 1) and f(s) = e(-s), the solution u* = u(x, t; lambda*) is global in time and diverges in the sense \\u*((.),t)\\(infinity) --> infinity, as t --> infinity. Moreover, it is proved that this divergence is global i.e. u*(x, t) --> infinity as t --> infinity for all x is an element of Q. The asymptotic form of divergence is also discussed for some special cases. (C) 2004 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2004.04.012 |
en |
dc.identifier.isi |
ISI:000223830300004 |
en |
dc.identifier.volume |
58 |
en |
dc.identifier.issue |
7-8 |
en |
dc.identifier.spage |
787 |
en |
dc.identifier.epage |
812 |
en |