HEAL DSpace

Global existence and divergence of critical solutions of a non-local parabolic problem in Ohmic heating process

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kavallaris, NI en
dc.contributor.author Lacey, AA en
dc.contributor.author Tzanetis, DE en
dc.date.accessioned 2014-03-01T01:20:34Z
dc.date.available 2014-03-01T01:20:34Z
dc.date.issued 2004 en
dc.identifier.issn 0362-546X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15966
dc.subject Asymptotic behaviour en
dc.subject Comparison methods en
dc.subject Global-unbounded solutions en
dc.subject Non-local parabolic problems en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other Diffusion en
dc.subject.other Electric conductivity en
dc.subject.other Electric currents en
dc.subject.other Electric resistance en
dc.subject.other Heating en
dc.subject.other Set theory en
dc.subject.other Asymptotic behavior en
dc.subject.other Comparison methods en
dc.subject.other Global-unbounded solutions en
dc.subject.other Non-local parabolic problems en
dc.subject.other Boundary value problems en
dc.title Global existence and divergence of critical solutions of a non-local parabolic problem in Ohmic heating process en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.na.2004.04.012 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.na.2004.04.012 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract We investigate the behaviour of some critical solutions of a non-local initial-boundary value problem for the equation u(t) = Deltau + lambdaf(u)/(integral(Omega)f(u)dx)(2), Omega subset of R-N, N = 1, 2. Under specific conditions on f, there exists a lambda* such that for each 0 < lambda < lambda* there corresponds a unique steady-state solution and u = u(x, t; lambda) is a global in time-bounded solution, which tends to the unique steady-state solution as t --> infinity uniformly in x. Whereas for lambda greater than or equal to lambda* there is no steady state and if lambda > lambda* then u blows up globally. Here, we show that when (a) N = 1, Omega = (-1, 1) and f(s) > 0, f'(s) < 0, s greater than or equal to 0, or (b) N = 2, Omega = B(0, 1) and f(s) = e(-s), the solution u* = u(x, t; lambda*) is global in time and diverges in the sense \\u*((.),t)\\(infinity) --> infinity, as t --> infinity. Moreover, it is proved that this divergence is global i.e. u*(x, t) --> infinity as t --> infinity for all x is an element of Q. The asymptotic form of divergence is also discussed for some special cases. (C) 2004 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Nonlinear Analysis, Theory, Methods and Applications en
dc.identifier.doi 10.1016/j.na.2004.04.012 en
dc.identifier.isi ISI:000223830300004 en
dc.identifier.volume 58 en
dc.identifier.issue 7-8 en
dc.identifier.spage 787 en
dc.identifier.epage 812 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής