HEAL DSpace

Gradient-assisted radial basis function networks: Theory and applications

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Kampolis, IC en
dc.contributor.author Karangelos, EI en
dc.contributor.author Giannakoglou, KC en
dc.date.accessioned 2014-03-01T01:20:34Z
dc.date.available 2014-03-01T01:20:34Z
dc.date.issued 2004 en
dc.identifier.issn 0307-904X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15968
dc.subject Multivariate interpolation methods en
dc.subject Noisy environment en
dc.subject Radial basis function networks en
dc.subject.classification Engineering, Multidisciplinary en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Aerodynamics en
dc.subject.other Airfoils en
dc.subject.other Approximation theory en
dc.subject.other Combined cycle power plants en
dc.subject.other Functions en
dc.subject.other Gas turbine power plants en
dc.subject.other Interpolation en
dc.subject.other Mathematical models en
dc.subject.other Modal analysis en
dc.subject.other Thermodynamics en
dc.subject.other Activation functions en
dc.subject.other Radial basis function networks en
dc.subject.other mathematical method en
dc.subject.other mechanical engineering en
dc.title Gradient-assisted radial basis function networks: Theory and applications en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.apm.2003.08.002 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.apm.2003.08.002 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract This paper introduces a new variant of the radial basis function networks (RBFNs) with enhanced capacity to approximate any input-output mapping defined by a collection of activation signals and the corresponding responses. The new multivariate interpolation tool is conceptually drawn upon the standard formulation of RBFNs. However, the nonlinear mapping from the input to the hidden network units is modified by taking into account approximate values of the directional slopes of the response surface with respect to the free parameters. The RBF centers are selected in a forward manner and the activation function acts upon ""distances"" between input patterns and the RBF centers with components scaled by the aforementioned slopes. The latter should be viewed as local sensitivity measures simultaneously computed by the network itself. The improved performance of the new gradient-assisted radial basis function networks (GARBFNs) as interpolation tools will be demonstrated using a multimodal analytical function and two industrial applications related to the aerodynamic performance of airfoils and the thermodynamic performance of a gas turbine combined-cycle power plant. © 2003 Elsevier Inc. All rights reserved. en
heal.publisher ELSEVIER SCIENCE INC en
heal.journalName Applied Mathematical Modelling en
dc.identifier.doi 10.1016/j.apm.2003.08.002 en
dc.identifier.isi ISI:000187620700005 en
dc.identifier.volume 28 en
dc.identifier.issue 2 en
dc.identifier.spage 197 en
dc.identifier.epage 209 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής