dc.contributor.author |
Kampolis, IC |
en |
dc.contributor.author |
Karangelos, EI |
en |
dc.contributor.author |
Giannakoglou, KC |
en |
dc.date.accessioned |
2014-03-01T01:20:34Z |
|
dc.date.available |
2014-03-01T01:20:34Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0307-904X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15968 |
|
dc.subject |
Multivariate interpolation methods |
en |
dc.subject |
Noisy environment |
en |
dc.subject |
Radial basis function networks |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Aerodynamics |
en |
dc.subject.other |
Airfoils |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Combined cycle power plants |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Gas turbine power plants |
en |
dc.subject.other |
Interpolation |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Modal analysis |
en |
dc.subject.other |
Thermodynamics |
en |
dc.subject.other |
Activation functions |
en |
dc.subject.other |
Radial basis function networks |
en |
dc.subject.other |
mathematical method |
en |
dc.subject.other |
mechanical engineering |
en |
dc.title |
Gradient-assisted radial basis function networks: Theory and applications |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.apm.2003.08.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.apm.2003.08.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This paper introduces a new variant of the radial basis function networks (RBFNs) with enhanced capacity to approximate any input-output mapping defined by a collection of activation signals and the corresponding responses. The new multivariate interpolation tool is conceptually drawn upon the standard formulation of RBFNs. However, the nonlinear mapping from the input to the hidden network units is modified by taking into account approximate values of the directional slopes of the response surface with respect to the free parameters. The RBF centers are selected in a forward manner and the activation function acts upon ""distances"" between input patterns and the RBF centers with components scaled by the aforementioned slopes. The latter should be viewed as local sensitivity measures simultaneously computed by the network itself. The improved performance of the new gradient-assisted radial basis function networks (GARBFNs) as interpolation tools will be demonstrated using a multimodal analytical function and two industrial applications related to the aerodynamic performance of airfoils and the thermodynamic performance of a gas turbine combined-cycle power plant. © 2003 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
Applied Mathematical Modelling |
en |
dc.identifier.doi |
10.1016/j.apm.2003.08.002 |
en |
dc.identifier.isi |
ISI:000187620700005 |
en |
dc.identifier.volume |
28 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
197 |
en |
dc.identifier.epage |
209 |
en |