HEAL DSpace

Hybrid meta-heuristic algorithm for the simultaneous optimization of the O-D trip matrix estimation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Stathopoulos, A en
dc.contributor.author Tsekeris, T en
dc.date.accessioned 2014-03-01T01:20:35Z
dc.date.available 2014-03-01T01:20:35Z
dc.date.issued 2004 en
dc.identifier.issn 1093-9687 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/15976
dc.subject Heuristic Algorithm en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Construction & Building Technology en
dc.subject.classification Engineering, Civil en
dc.subject.other Computer aided design en
dc.subject.other Convergence of numerical methods en
dc.subject.other Genetic algorithms en
dc.subject.other Heuristic methods en
dc.subject.other Optimization en
dc.subject.other Problem solving en
dc.subject.other Convergence rates en
dc.subject.other Meta-heuristic optimization algorithms en
dc.subject.other Urban road networks en
dc.subject.other Civil engineering en
dc.subject.other civil engineering en
dc.subject.other genetic algorithm en
dc.title Hybrid meta-heuristic algorithm for the simultaneous optimization of the O-D trip matrix estimation en
heal.type journalArticle en
heal.identifier.primary 10.1111/j.1467-8667.2004.00367.x en
heal.identifier.secondary http://dx.doi.org/10.1111/j.1467-8667.2004.00367.x en
heal.language English en
heal.publicationDate 2004 en
heal.abstract In the present article, the origin-destination (O-D) trip matrix estimation is formulated as a simultaneous optimization problem and is resolved by employing three different meta-heuristic optimization algorithms. These include a genetic algorithm (GA), a simulated annealing (SA) algorithm, and a hybrid algorithm (GASA) based on the combination of GA and SA. The computational performance of the three algorithms is evaluated and compared by implementing them on a realistic urban road network. The results of the simulation tests demonstrate that SA and GASA produce a more accurate final solution than GA, whereas GASA shows a superior convergence rate, that is, faster improvement from the initial solution, in comparison to SA and GA. In addition, GASA produces a final solution that is more robust and less dependent on the initial demand pattern, in comparison to that obtained from a greedy search algorithm. © 2004 Computer-Aided Civil and Infrastructure Engineering. en
heal.publisher BLACKWELL PUBLISHERS en
heal.journalName Computer-Aided Civil and Infrastructure Engineering en
dc.identifier.doi 10.1111/j.1467-8667.2004.00367.x en
dc.identifier.isi ISI:000223310800003 en
dc.identifier.volume 19 en
dc.identifier.issue 6 en
dc.identifier.spage 421 en
dc.identifier.epage 435 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής