dc.contributor.author |
Stathopoulos, A |
en |
dc.contributor.author |
Tsekeris, T |
en |
dc.date.accessioned |
2014-03-01T01:20:35Z |
|
dc.date.available |
2014-03-01T01:20:35Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1093-9687 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15976 |
|
dc.subject |
Heuristic Algorithm |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Construction & Building Technology |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Computer aided design |
en |
dc.subject.other |
Convergence of numerical methods |
en |
dc.subject.other |
Genetic algorithms |
en |
dc.subject.other |
Heuristic methods |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Convergence rates |
en |
dc.subject.other |
Meta-heuristic optimization algorithms |
en |
dc.subject.other |
Urban road networks |
en |
dc.subject.other |
Civil engineering |
en |
dc.subject.other |
civil engineering |
en |
dc.subject.other |
genetic algorithm |
en |
dc.title |
Hybrid meta-heuristic algorithm for the simultaneous optimization of the O-D trip matrix estimation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1111/j.1467-8667.2004.00367.x |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1111/j.1467-8667.2004.00367.x |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In the present article, the origin-destination (O-D) trip matrix estimation is formulated as a simultaneous optimization problem and is resolved by employing three different meta-heuristic optimization algorithms. These include a genetic algorithm (GA), a simulated annealing (SA) algorithm, and a hybrid algorithm (GASA) based on the combination of GA and SA. The computational performance of the three algorithms is evaluated and compared by implementing them on a realistic urban road network. The results of the simulation tests demonstrate that SA and GASA produce a more accurate final solution than GA, whereas GASA shows a superior convergence rate, that is, faster improvement from the initial solution, in comparison to SA and GA. In addition, GASA produces a final solution that is more robust and less dependent on the initial demand pattern, in comparison to that obtained from a greedy search algorithm. © 2004 Computer-Aided Civil and Infrastructure Engineering. |
en |
heal.publisher |
BLACKWELL PUBLISHERS |
en |
heal.journalName |
Computer-Aided Civil and Infrastructure Engineering |
en |
dc.identifier.doi |
10.1111/j.1467-8667.2004.00367.x |
en |
dc.identifier.isi |
ISI:000223310800003 |
en |
dc.identifier.volume |
19 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
421 |
en |
dc.identifier.epage |
435 |
en |