dc.contributor.author |
Maragos, P |
en |
dc.contributor.author |
Sofou, A |
en |
dc.contributor.author |
Stamou, GB |
en |
dc.contributor.author |
Tzouvaras, V |
en |
dc.contributor.author |
Papatheodorou, E |
en |
dc.contributor.author |
Stamou, GP |
en |
dc.date.accessioned |
2014-03-01T01:20:36Z |
|
dc.date.available |
2014-03-01T01:20:36Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1110-8657 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15981 |
|
dc.subject |
Geometric feature extraction |
en |
dc.subject |
Morphological segmentation |
en |
dc.subject |
Multiscale texture analysis |
en |
dc.subject |
Neurofuzzy quality inference |
en |
dc.subject |
Soilsection image analysis |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Ecosystems |
en |
dc.subject.other |
Feature extraction |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.subject.other |
Image quality |
en |
dc.subject.other |
Image segmentation |
en |
dc.subject.other |
Morphology |
en |
dc.subject.other |
Geometric feature extraction |
en |
dc.subject.other |
Morphological segmentation |
en |
dc.subject.other |
Multiscale texture analysis |
en |
dc.subject.other |
soilsection image analysis |
en |
dc.subject.other |
Image analysis |
en |
dc.title |
Image analysis of soil micromorphology: Feature extraction, segmentation, and quality inference |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/S1110865704402054 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/S1110865704402054 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We present an automated system that we have developed for estimation of the bioecological quality of soils using various image analysis methodologies. Its goal is to analyze soilsection images, extract features related to their micromorphology, and relate the visual features to various degrees of soil fertility inferred from biochemical characteristics of the soil. The image methodologies used range from low-level image processing tasks, such as nonlinear enhancement, multiscale analysis, geometric feature detection, and size distributions, to object-oriented analysis, such as segmentation, region texture, and shape analysis. |
en |
heal.publisher |
HINDAWI PUBLISHING CORPORATION |
en |
heal.journalName |
Eurasip Journal on Applied Signal Processing |
en |
dc.identifier.doi |
10.1155/S1110865704402054 |
en |
dc.identifier.isi |
ISI:000223382900010 |
en |
dc.identifier.volume |
2004 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
902 |
en |
dc.identifier.epage |
912 |
en |