dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Tolias, A |
en |
dc.date.accessioned |
2014-03-01T01:20:37Z |
|
dc.date.available |
2014-03-01T01:20:37Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1016-443X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15987 |
|
dc.subject |
banach space |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BANACH-SPACES |
en |
dc.subject.other |
QUOTIENTS |
en |
dc.title |
Indecomposability and unconditionality in duality |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00039-004-0464-9 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00039-004-0464-9 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We construct a reflexive and unconditionally saturated Banach space $$ X_{uh} $$ such that its dual $$ X^{\ast}_{uh} $$ is Hereditarily Indecomposable. We also show that every quotient of $$ X_{uh} $$ has a further quotient which is Hereditarily Indecomposable and every quotient of $$ X^{\ast}_{uh} $$ has a further quotient with an unconditional basis. |
en |
heal.publisher |
BIRKHAUSER VERLAG AG |
en |
heal.journalName |
Geometric and Functional Analysis |
en |
dc.identifier.doi |
10.1007/s00039-004-0464-9 |
en |
dc.identifier.isi |
ISI:000222110200001 |
en |
dc.identifier.volume |
14 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
247 |
en |
dc.identifier.epage |
282 |
en |