dc.contributor.author |
Evangelaras, H |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:20:37Z |
|
dc.date.available |
2014-03-01T01:20:37Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0315-3681 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/15992 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-2442479778&partnerID=40&md5=89852d45c56bed66c62a3d16e8bca5c1 |
en |
dc.subject |
D-optimal designs |
en |
dc.subject |
Factorial designs |
en |
dc.subject |
Inequivalent projections |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
WEIGHING DESIGNS |
en |
dc.subject.other |
CONSTRUCTION |
en |
dc.title |
Inequivalent projections of some D-optimal designs |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Screening designs are useful for situations where a large number of factors (q) is examined but only few (k) of these are expected to be important. It is of practical interest for a given k to know all the inequivalent projections of the design into the k dimensions. In this paper we have found all the inequivalent projections of a number of designs in the class of n equivalent to 1(mod4), n equivalent to 2(mod4) and n equivalent to 3(mod4) into k = 3,4,5 and 6 factors and we have also studied the geometric properties of these designs. |
en |
heal.publisher |
UTIL MATH PUBL INC |
en |
heal.journalName |
Utilitas Mathematica |
en |
dc.identifier.isi |
ISI:000220955300007 |
en |
dc.identifier.volume |
65 |
en |
dc.identifier.spage |
83 |
en |
dc.identifier.epage |
96 |
en |