dc.contributor.author |
Patermarakis, G |
en |
dc.contributor.author |
Papaioannou, J |
en |
dc.contributor.author |
Karayianni, H |
en |
dc.contributor.author |
Masavetas, K |
en |
dc.date.accessioned |
2014-03-01T01:20:39Z |
|
dc.date.available |
2014-03-01T01:20:39Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0013-4651 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16005 |
|
dc.subject |
Electric Conductivity |
en |
dc.subject.classification |
Electrochemistry |
en |
dc.subject.classification |
Materials Science, Coatings & Films |
en |
dc.subject.other |
Dipoles |
en |
dc.subject.other |
Photoanodes |
en |
dc.subject.other |
Spin reorientation |
en |
dc.subject.other |
Spin-flip processes |
en |
dc.subject.other |
Anisotropy |
en |
dc.subject.other |
Magnetic susceptibility |
en |
dc.subject.other |
Magnetization |
en |
dc.subject.other |
Photocatalysis |
en |
dc.subject.other |
Polycrystalline materials |
en |
dc.subject.other |
Spectroscopy |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Electric conductivity |
en |
dc.title |
Interpretation of electrical conductance transition of hematite in the spin-flip magnetic transition temperature range |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1149/1.1768549 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1149/1.1768549 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Using polycrystalline pure hematite at frequencies of 100 Hz-100 kHz and temperatures of 190-350 K impedance spectroscopy was employed to investigate the electrical conductance transition and correlate it with magnetic transition occurring within this temperature range. A background of slight impurity donor or acceptor semiconductivity was observed above which a peak of conductivity appeared in the temperature range of magnetic transition. The results suggested that the transition from antiferro-magnetically to weak ferromagnetically coupled Fe3+ and vice versa takes place through their transformation to uncoupled Fe3+ and an equilibrium between these types of coupled and uncoupled pairs of Fe3+ is established. A model, thermodynamically sustained, involving bulk concentration of both types of coupled and of uncoupled Fe3+ was formulated precisely predicting the dependence of magnetic transition on temperature and the appearance of peaks in both the uncoupled Fe3+ concentration and conductivity within the transition temperature range. The conductivity, mainly due to intrinsic semiconductance coming from the activation of uncoupled Fe3+, depends on both temperature and concentration of uncoupled Fe3+. The heretofore elusive semiconductive character of hematite is explained. © 2004 The Electrochemical Society. All rights reserved. |
en |
heal.publisher |
ELECTROCHEMICAL SOC INC |
en |
heal.journalName |
Journal of the Electrochemical Society |
en |
dc.identifier.doi |
10.1149/1.1768549 |
en |
dc.identifier.isi |
ISI:000222969500070 |
en |
dc.identifier.volume |
151 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
J62 |
en |
dc.identifier.epage |
J68 |
en |