HEAL DSpace

Interpretation of electrical conductance transition of hematite in the spin-flip magnetic transition temperature range

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Patermarakis, G en
dc.contributor.author Papaioannou, J en
dc.contributor.author Karayianni, H en
dc.contributor.author Masavetas, K en
dc.date.accessioned 2014-03-01T01:20:39Z
dc.date.available 2014-03-01T01:20:39Z
dc.date.issued 2004 en
dc.identifier.issn 0013-4651 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16005
dc.subject Electric Conductivity en
dc.subject.classification Electrochemistry en
dc.subject.classification Materials Science, Coatings & Films en
dc.subject.other Dipoles en
dc.subject.other Photoanodes en
dc.subject.other Spin reorientation en
dc.subject.other Spin-flip processes en
dc.subject.other Anisotropy en
dc.subject.other Magnetic susceptibility en
dc.subject.other Magnetization en
dc.subject.other Photocatalysis en
dc.subject.other Polycrystalline materials en
dc.subject.other Spectroscopy en
dc.subject.other Strain en
dc.subject.other Electric conductivity en
dc.title Interpretation of electrical conductance transition of hematite in the spin-flip magnetic transition temperature range en
heal.type journalArticle en
heal.identifier.primary 10.1149/1.1768549 en
heal.identifier.secondary http://dx.doi.org/10.1149/1.1768549 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Using polycrystalline pure hematite at frequencies of 100 Hz-100 kHz and temperatures of 190-350 K impedance spectroscopy was employed to investigate the electrical conductance transition and correlate it with magnetic transition occurring within this temperature range. A background of slight impurity donor or acceptor semiconductivity was observed above which a peak of conductivity appeared in the temperature range of magnetic transition. The results suggested that the transition from antiferro-magnetically to weak ferromagnetically coupled Fe3+ and vice versa takes place through their transformation to uncoupled Fe3+ and an equilibrium between these types of coupled and uncoupled pairs of Fe3+ is established. A model, thermodynamically sustained, involving bulk concentration of both types of coupled and of uncoupled Fe3+ was formulated precisely predicting the dependence of magnetic transition on temperature and the appearance of peaks in both the uncoupled Fe3+ concentration and conductivity within the transition temperature range. The conductivity, mainly due to intrinsic semiconductance coming from the activation of uncoupled Fe3+, depends on both temperature and concentration of uncoupled Fe3+. The heretofore elusive semiconductive character of hematite is explained. © 2004 The Electrochemical Society. All rights reserved. en
heal.publisher ELECTROCHEMICAL SOC INC en
heal.journalName Journal of the Electrochemical Society en
dc.identifier.doi 10.1149/1.1768549 en
dc.identifier.isi ISI:000222969500070 en
dc.identifier.volume 151 en
dc.identifier.issue 8 en
dc.identifier.spage J62 en
dc.identifier.epage J68 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής