HEAL DSpace

Learning improvement of neural networks used in structural optimization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Lagaros, ND en
dc.contributor.author Papadrakakis, M en
dc.date.accessioned 2014-03-01T01:20:43Z
dc.date.available 2014-03-01T01:20:43Z
dc.date.issued 2004 en
dc.identifier.issn 0965-9978 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16021
dc.subject Evolution strategies en
dc.subject Ill-conditioning en
dc.subject Neural networks en
dc.subject Structural optimization en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Computer Science, Software Engineering en
dc.subject.other Algorithms en
dc.subject.other Approximation theory en
dc.subject.other Backpropagation en
dc.subject.other Computational methods en
dc.subject.other Finite element method en
dc.subject.other Fracture mechanics en
dc.subject.other Learning systems en
dc.subject.other Matrix algebra en
dc.subject.other Neural networks en
dc.subject.other Numerical methods en
dc.subject.other Problem solving en
dc.subject.other Statistical methods en
dc.subject.other Structural optimization en
dc.subject.other Vectors en
dc.subject.other Evolution strategies en
dc.subject.other III-conditioning en
dc.subject.other Software engineering en
dc.title Learning improvement of neural networks used in structural optimization en
heal.type journalArticle en
heal.identifier.primary 10.1016/S0965-9978(03)00112-1 en
heal.identifier.secondary http://dx.doi.org/10.1016/S0965-9978(03)00112-1 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract The performance of feed-forward neural networks can be substantially impaired by the ill-conditioning of the corresponding Jacobian matrix. Ill-conditioning appearing in feed-forward learning process is related to the properties of the activation function used. It will be shown that the performance of the network training can be improved using an adaptive activation function with a properly updated gain parameter during the learning process. The efficiency of the proposed adaptive procedure is examined in structural optimization problems where a trained neural network is used to replace the structural analysis phase and capture the necessary data for the optimizer. The optimizer used in this study is an algorithm based on evolution strategies. (C) 2003 Elsevier Ltd. All rights reserved. en
heal.publisher ELSEVIER SCI LTD en
heal.journalName Advances in Engineering Software en
dc.identifier.doi 10.1016/S0965-9978(03)00112-1 en
dc.identifier.isi ISI:000188879100002 en
dc.identifier.volume 35 en
dc.identifier.issue 1 en
dc.identifier.spage 9 en
dc.identifier.epage 25 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής