HEAL DSpace

Linear polarization constants of Hilbert spaces

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pappas, A en
dc.contributor.author Revesz, SGy en
dc.date.accessioned 2014-03-01T01:20:43Z
dc.date.available 2014-03-01T01:20:43Z
dc.date.issued 2004 en
dc.identifier.issn 0022-247X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16023
dc.subject Approximation Order en
dc.subject banach space en
dc.subject Hilbert Space en
dc.subject Linear Algebra en
dc.subject Lower Bound en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other PLANK PROBLEM en
dc.subject.other LOWER BOUNDS en
dc.subject.other POLYNOMIALS en
dc.subject.other NORMS en
dc.title Linear polarization constants of Hilbert spaces en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.jmaa.2004.06.031 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.jmaa.2004.06.031 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract This paper has been motivated by previous work on estimating lower bounds for the norms of homogeneous polynomials which are products of linear forms. The purpose of this work is to investigate the so-called nth (linear) polarization constant c(n)(X) of a finite-dimensional Banach space X, and in particular of a Hilbert space. Note that c(n)(X) is an isometric invariant of the space. It has been proved by J. Arias-de-Reyna [Linear Algebra Appl. 285 (1998) 395-408] that if H is a complex Hilbert space of dimension at least n, then c(n)(H) = n(n/2). The same value of c(n)(H) for real Hilbert spaces is only conjectured, but estimates were obtained in many cases. In particular, it is known that the nth (linear) polarization constant of a d-dimensional real or complex Hilbert space H is of the approximate order d(n/2), for n large enough, and also an integral form of the asymptotic quantity c(H), that is the (linear) polarization constant of the Hilbert space H, where dim H = d, was obtained together with an explicit form for real spaces. Here we present another proof, we find the explicit form even for complex spaces, and we elaborate further on the values of c(n)(H) and c (H). In particular, we answer a question raised by J.C. Garcia-Vazquez and R. Villa [Mathematika 46 (1999) 315-322]. Also, we prove the conjectured c(n)(H) = n(n/2) for real Hilbert spaces of dimension n less than or equal to 5. A few further estimates have been also derived. (C) 2004 Elsevier Inc. All rights reserved. en
heal.publisher ACADEMIC PRESS INC ELSEVIER SCIENCE en
heal.journalName Journal of Mathematical Analysis and Applications en
dc.identifier.doi 10.1016/j.jmaa.2004.06.031 en
dc.identifier.isi ISI:000225196300010 en
dc.identifier.volume 300 en
dc.identifier.issue 1 en
dc.identifier.spage 129 en
dc.identifier.epage 146 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής