dc.contributor.author |
Smyrlis, G |
en |
dc.contributor.author |
Zisis, V |
en |
dc.date.accessioned |
2014-03-01T01:20:44Z |
|
dc.date.available |
2014-03-01T01:20:44Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0022-247X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16025 |
|
dc.subject |
Locally Lipschitz continuous operator |
en |
dc.subject |
Palais-Smale condition |
en |
dc.subject |
Picard-Lindelöf theorem |
en |
dc.subject |
Sobolev embedding theorem |
en |
dc.subject |
Steepest descent method |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
UNCONSTRAINED OPTIMIZATION |
en |
dc.subject.other |
ALGORITHM |
en |
dc.title |
Local convergence of the steepest descent method in Hilbert spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jmaa.2004.06.051 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jmaa.2004.06.051 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The aim of this paper is to establish the local convergence of the steepest descent method for C-1- functionals f :H-->R defined on an infinite-dimensional Hilbert space H, under a Palais-Smaletype condition. The functionals f under consideration are also assumed to have a locally Lipschitz continuous gradient operator delf. Our approach is based on the solutions of the ordinary differential equation x (t) = -del f (x(t)). (C) 2004 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Mathematical Analysis and Applications |
en |
dc.identifier.doi |
10.1016/j.jmaa.2004.06.051 |
en |
dc.identifier.isi |
ISI:000225417700014 |
en |
dc.identifier.volume |
300 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
436 |
en |
dc.identifier.epage |
453 |
en |