HEAL DSpace

Molecular dynamics simulation of structure and thermodynamic properties of poly(dimethylsilamethylene) and hydrocarbon solubility therein: Toward the development of novel membrane materials for hydrocarbon separation

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Raptis, VE en
dc.contributor.author Economou, IG en
dc.contributor.author Theodorou, DN en
dc.contributor.author Petrou, J en
dc.contributor.author Petropoulos, JH en
dc.date.accessioned 2014-03-01T01:21:05Z
dc.date.available 2014-03-01T01:21:05Z
dc.date.issued 2004 en
dc.identifier.issn 0024-9297 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16060
dc.subject Molecular Dynamic Simulation en
dc.subject Thermodynamic Properties en
dc.subject.classification Polymer Science en
dc.subject.other Chemical bonds en
dc.subject.other Computer simulation en
dc.subject.other Methane en
dc.subject.other Organic polymers en
dc.subject.other Paraffins en
dc.subject.other Permselective membranes en
dc.subject.other Separation en
dc.subject.other Solubility en
dc.subject.other Thermal expansion en
dc.subject.other Thermodynamic properties en
dc.subject.other Bond length en
dc.subject.other Cohesive energy density en
dc.subject.other Isothermal compressibility en
dc.subject.other Polydimethylsilamethylene en
dc.subject.other Thermal expansion coefficient en
dc.subject.other Molecular dynamics en
dc.title Molecular dynamics simulation of structure and thermodynamic properties of poly(dimethylsilamethylene) and hydrocarbon solubility therein: Toward the development of novel membrane materials for hydrocarbon separation en
heal.type journalArticle en
heal.identifier.primary 10.1021/ma034332a en
heal.identifier.secondary http://dx.doi.org/10.1021/ma034332a en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Molecular dynamics simulation is used to model the structure and thermodynamic properties of a novel rubbery polymer with promising membrane properties for hydrocarbon separation. A realistic united atom force field is developed based on extensive density functional theory quantum mechanics calculations for a model dimer and volumetric data at various temperatures and pressures. Both a constant bond length and a flexible bond length model are examined. Well-equilibrated structures of the polymer melt at various conditions are used to evaluate numerous thermodynamic properties, such as the isothermal compressibility, thermal expansion coefficient, and cohesive energy density, and structural properties, including intra- and intermolecular distribution functions and the static structure factor. The microscopic structure of the free volume of the polymer matrix and its evolution with time affects the diffusion of penetrant molecules considerably; they are calculated accurately using the Greenfield and Theodorou geometric analysis. The solubilities of various n-alkanes from methane to n-hexane at 300 and 400 K are calculated using the Widom test particle insertion technique. In all cases, simulation results are in good agreement with literature experimental data for the volumetric properties of the polymer melt and the solubility coefficients of n-alkanes in the polymer. In a forthcoming publication, the transport properties of these systems and the underlying molecular mechanisms will be examined. en
heal.publisher AMER CHEMICAL SOC en
heal.journalName Macromolecules en
dc.identifier.doi 10.1021/ma034332a en
dc.identifier.isi ISI:000188803000055 en
dc.identifier.volume 37 en
dc.identifier.issue 3 en
dc.identifier.spage 1102 en
dc.identifier.epage 1112 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής