dc.contributor.author |
Emfietzoglou, D |
en |
dc.contributor.author |
Karava, K |
en |
dc.contributor.author |
Papamichael, G |
en |
dc.contributor.author |
Moscovitch, M |
en |
dc.date.accessioned |
2014-03-01T01:21:05Z |
|
dc.date.available |
2014-03-01T01:21:05Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0144-8420 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16061 |
|
dc.subject.classification |
Environmental Sciences |
en |
dc.subject.classification |
Public, Environmental & Occupational Health |
en |
dc.subject.classification |
Nuclear Science & Technology |
en |
dc.subject.classification |
Radiology, Nuclear Medicine & Medical Imaging |
en |
dc.subject.other |
DNA |
en |
dc.subject.other |
polymer |
en |
dc.subject.other |
water |
en |
dc.subject.other |
article |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
dielectric constant |
en |
dc.subject.other |
dosimetry |
en |
dc.subject.other |
electron radiation |
en |
dc.subject.other |
experimental design |
en |
dc.subject.other |
heavy ion radiation |
en |
dc.subject.other |
linear energy transfer |
en |
dc.subject.other |
liquid |
en |
dc.subject.other |
Monte Carlo method |
en |
dc.subject.other |
oscillator |
en |
dc.subject.other |
particle radiation |
en |
dc.subject.other |
phase transition |
en |
dc.subject.other |
proton radiation |
en |
dc.subject.other |
proton transport |
en |
dc.subject.other |
radiation energy |
en |
dc.subject.other |
theoretical model |
en |
dc.subject.other |
water vapor |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Linear Energy Transfer |
en |
dc.subject.other |
Models, Chemical |
en |
dc.subject.other |
Models, Statistical |
en |
dc.subject.other |
Monte Carlo Method |
en |
dc.subject.other |
Phase Transition |
en |
dc.subject.other |
Protons |
en |
dc.subject.other |
Radiation Dosage |
en |
dc.subject.other |
Radiometry |
en |
dc.subject.other |
Scattering, Radiation |
en |
dc.subject.other |
Water |
en |
dc.title |
Monte-Carlo calculations of radial dose and restricted-let for protons in water |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1093/rpd/nch163 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1093/rpd/nch163 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
A new Monte-Carlo code for event-by-event simulation of the transport of energetic non-relativistic protons (∼0.5-10 MeV) and all their secondary electrons (down to 1 Ry) in both the vapour and liquid phases of water is presented. A unified particle-water inelastic model for both phases of water has been developed based on experimental optical data and elements of the Bethe theory. The model applies to both electrons and heavy-charged particles and is particularly suitable for extension to other media of biological relevance (organic polymers, DNA, etc.). Condensed-phase effects are included in the liquid version (MC4L) by means of the dielectric functions which, essentially, substitute the oscillator-strength used in the vapour version (MC4V). The results in the form of radial dose distributions and spatially restricted linear energy transfer are presented and compared with the literature. © Oxford University Press 2004; all rights reserved. |
en |
heal.publisher |
OXFORD UNIV PRESS |
en |
heal.journalName |
Radiation Protection Dosimetry |
en |
dc.identifier.doi |
10.1093/rpd/nch163 |
en |
dc.identifier.isi |
ISI:000224058000148 |
en |
dc.identifier.volume |
110 |
en |
dc.identifier.issue |
1-4 |
en |
dc.identifier.spage |
871 |
en |
dc.identifier.epage |
879 |
en |