dc.contributor.author |
Schreibmann, E |
en |
dc.contributor.author |
Lahanas, M |
en |
dc.contributor.author |
Xing, L |
en |
dc.contributor.author |
Baltas, D |
en |
dc.date.accessioned |
2014-03-01T01:21:06Z |
|
dc.date.available |
2014-03-01T01:21:06Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0031-9155 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16066 |
|
dc.subject.classification |
Engineering, Biomedical |
en |
dc.subject.classification |
Radiology, Nuclear Medicine & Medical Imaging |
en |
dc.subject.other |
Dosimetry |
en |
dc.subject.other |
Evolutionary algorithms |
en |
dc.subject.other |
Optimization |
en |
dc.subject.other |
Radiotherapy |
en |
dc.subject.other |
Tumors |
en |
dc.subject.other |
Evolutionary optimization |
en |
dc.subject.other |
Inverse planning |
en |
dc.subject.other |
Medicine |
en |
dc.subject.other |
algorithm |
en |
dc.subject.other |
article |
en |
dc.subject.other |
beam therapy |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
head and neck cancer |
en |
dc.subject.other |
histogram |
en |
dc.subject.other |
intensity modulated radiation therapy |
en |
dc.subject.other |
priority journal |
en |
dc.subject.other |
prostate cancer |
en |
dc.subject.other |
radiation dose distribution |
en |
dc.subject.other |
Algorithms |
en |
dc.subject.other |
Head and Neck Neoplasms |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Male |
en |
dc.subject.other |
Models, Statistical |
en |
dc.subject.other |
Models, Theoretical |
en |
dc.subject.other |
Phantoms, Imaging |
en |
dc.subject.other |
Prostatic Neoplasms |
en |
dc.subject.other |
Radiometry |
en |
dc.subject.other |
Radiotherapy Dosage |
en |
dc.subject.other |
Radiotherapy Planning, Computer-Assisted |
en |
dc.subject.other |
Radiotherapy, Conformal |
en |
dc.subject.other |
Time Factors |
en |
dc.title |
Multiobjective evolutionary optimization of the number of beams, their orientations and weights for intensity-modulated radiation therapy |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/0031-9155/49/5/007 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/0031-9155/49/5/007 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We propose a hybrid multiobjective (MO) evolutionary optimization algorithm (MOEA) for intensity-modulated radiotherapy inverse planning and apply it to optimize the number of incident beams, their orientations and intensity profiles. The algorithm produces a set of efficient solutions, which represent different clinical trade-offs and contains information such as variety of dose distributions and dose-volume histograms. No importance factors are required and solutions can be obtained in regions not accessible by conventional weighted sum approaches. The application of the algorithm using a test case, a prostate and a head and neck tumour case is shown. The results are compared with MO inverse planning using a gradient-based optimization algorithm. © 2004 IOP Publishing Ltd. |
en |
heal.publisher |
IOP PUBLISHING LTD |
en |
heal.journalName |
Physics in Medicine and Biology |
en |
dc.identifier.doi |
10.1088/0031-9155/49/5/007 |
en |
dc.identifier.isi |
ISI:000220314800007 |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
5 |
en |
dc.identifier.spage |
747 |
en |
dc.identifier.epage |
770 |
en |