HEAL DSpace

Multiple solutions for nonlinear elliptic equations at resonance with a nonsmooth potential

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Motreanu, D en
dc.contributor.author Papageorgiou, NS en
dc.date.accessioned 2014-03-01T01:21:06Z
dc.date.available 2014-03-01T01:21:06Z
dc.date.issued 2004 en
dc.identifier.issn 0362-546X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16067
dc.subject Clarke subdifferential en
dc.subject Ekeland variational principle en
dc.subject Nonlinear regularity en
dc.subject Nonsmooth Mountain Pass Theorem en
dc.subject Nonsmooth Palais-Smale condition en
dc.subject p-Laplacian en
dc.subject Principal eigenvalue en
dc.subject Resonant problem en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Mathematics en
dc.subject.other Differentiation (calculus) en
dc.subject.other Eigenvalues and eigenfunctions en
dc.subject.other Functions en
dc.subject.other Laplace transforms en
dc.subject.other Problem solving en
dc.subject.other Theorem proving en
dc.subject.other Topology en
dc.subject.other Variational techniques en
dc.subject.other Clarke subdifferential en
dc.subject.other Ekeland variational principle en
dc.subject.other Non-linear regularity en
dc.subject.other Nonsmooth mountain pass theorem en
dc.subject.other Nonsmooth Palais-Smale condition en
dc.subject.other P-laplacian en
dc.subject.other Principal eigenvalue en
dc.subject.other Resonant problem en
dc.subject.other Nonlinear equations en
dc.title Multiple solutions for nonlinear elliptic equations at resonance with a nonsmooth potential en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.na.2003.11.011 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.na.2003.11.011 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract In this paper, we study a nonlinear elliptic problem at resonance driven by the p-Laplacian and with a nonsmooth potential (hemivariational inequality). Our approach is variational and it is based on the nonsmooth critical point theory for locally Lipschitz functions due to Chang. We prove a theorem guaranteeing the existence of one solution which is smooth and strictly positive. Then by strengthening the assumptions, we establish a multiplicity result providing the existence of at least two distinct solutions. Our hypotheses permit resonance and asymmetric behavior at +infinity and -infinity. As a byproduct of our analysis we obtain an nonlinear and nonsmooth generalization of a result of Brezis-Nirenberg about H-0(1) versus C-0(1) minimizers of a smooth functional. (C) 2003 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Nonlinear Analysis, Theory, Methods and Applications en
dc.identifier.doi 10.1016/j.na.2003.11.011 en
dc.identifier.isi ISI:000220261300006 en
dc.identifier.volume 56 en
dc.identifier.issue 8 en
dc.identifier.spage 1211 en
dc.identifier.epage 1234 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής