dc.contributor.author |
Motreanu, D |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:21:06Z |
|
dc.date.available |
2014-03-01T01:21:06Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0362-546X |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16067 |
|
dc.subject |
Clarke subdifferential |
en |
dc.subject |
Ekeland variational principle |
en |
dc.subject |
Nonlinear regularity |
en |
dc.subject |
Nonsmooth Mountain Pass Theorem |
en |
dc.subject |
Nonsmooth Palais-Smale condition |
en |
dc.subject |
p-Laplacian |
en |
dc.subject |
Principal eigenvalue |
en |
dc.subject |
Resonant problem |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
Differentiation (calculus) |
en |
dc.subject.other |
Eigenvalues and eigenfunctions |
en |
dc.subject.other |
Functions |
en |
dc.subject.other |
Laplace transforms |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Topology |
en |
dc.subject.other |
Variational techniques |
en |
dc.subject.other |
Clarke subdifferential |
en |
dc.subject.other |
Ekeland variational principle |
en |
dc.subject.other |
Non-linear regularity |
en |
dc.subject.other |
Nonsmooth mountain pass theorem |
en |
dc.subject.other |
Nonsmooth Palais-Smale condition |
en |
dc.subject.other |
P-laplacian |
en |
dc.subject.other |
Principal eigenvalue |
en |
dc.subject.other |
Resonant problem |
en |
dc.subject.other |
Nonlinear equations |
en |
dc.title |
Multiple solutions for nonlinear elliptic equations at resonance with a nonsmooth potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.na.2003.11.011 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.na.2003.11.011 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper, we study a nonlinear elliptic problem at resonance driven by the p-Laplacian and with a nonsmooth potential (hemivariational inequality). Our approach is variational and it is based on the nonsmooth critical point theory for locally Lipschitz functions due to Chang. We prove a theorem guaranteeing the existence of one solution which is smooth and strictly positive. Then by strengthening the assumptions, we establish a multiplicity result providing the existence of at least two distinct solutions. Our hypotheses permit resonance and asymmetric behavior at +infinity and -infinity. As a byproduct of our analysis we obtain an nonlinear and nonsmooth generalization of a result of Brezis-Nirenberg about H-0(1) versus C-0(1) minimizers of a smooth functional. (C) 2003 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Nonlinear Analysis, Theory, Methods and Applications |
en |
dc.identifier.doi |
10.1016/j.na.2003.11.011 |
en |
dc.identifier.isi |
ISI:000220261300006 |
en |
dc.identifier.volume |
56 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
1211 |
en |
dc.identifier.epage |
1234 |
en |