HEAL DSpace

New hybrid stochastic-deterministic technique for fast registration of dermatological images

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Pavlopoulos, SA en
dc.date.accessioned 2014-03-01T01:21:07Z
dc.date.available 2014-03-01T01:21:07Z
dc.date.issued 2004 en
dc.identifier.issn 0140-0118 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16074
dc.subject Dermatological applications en
dc.subject Image registration en
dc.subject Medical imaging en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Biomedical en
dc.subject.classification Mathematical & Computational Biology en
dc.subject.classification Medical Informatics en
dc.subject.other Algorithms en
dc.subject.other Dermatology en
dc.subject.other Image analysis en
dc.subject.other Optimization en
dc.subject.other Parameter estimation en
dc.subject.other Problem solving en
dc.subject.other Image registration en
dc.subject.other Medical image processing en
dc.subject.other Rotation parameters en
dc.subject.other Scaling parameters en
dc.subject.other Medical imaging en
dc.subject.other algorithm en
dc.subject.other article en
dc.subject.other cancer staging en
dc.subject.other controlled study en
dc.subject.other correlation analysis en
dc.subject.other diagnostic accuracy en
dc.subject.other diagnostic imaging en
dc.subject.other geometry en
dc.subject.other image analysis en
dc.subject.other image processing en
dc.subject.other imaging system en
dc.subject.other mathematical computing en
dc.subject.other melanoma en
dc.subject.other nonparametric test en
dc.subject.other skin examination en
dc.subject.other statistical analysis en
dc.subject.other statistical significance en
dc.subject.other stochastic model en
dc.subject.other validation process en
dc.subject.other Algorithms en
dc.subject.other Computer Simulation en
dc.subject.other Humans en
dc.subject.other Image Processing, Computer-Assisted en
dc.subject.other Melanoma en
dc.subject.other Neoplasm Staging en
dc.subject.other Skin Neoplasms en
dc.subject.other Stochastic Processes en
dc.title New hybrid stochastic-deterministic technique for fast registration of dermatological images en
heal.type journalArticle en
heal.identifier.primary 10.1007/BF02345211 en
heal.identifier.secondary http://dx.doi.org/10.1007/BF02345211 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Digital image processing in the medical field has become very popular in recent years owing to the significant advantages it offers over conventional techniques of visual or analogue image analysis. One of the most significant aspects in medical image processing has been that of image registration, which deals with the task of registering two images taken under different conditions. Image registration is considered an important issue in the field of dermatology, as pictures of a lesion taken in different periods need to be compared and quantitatively analysed. A hybrid image registration scheme was developed and evaluated for dermatological applications. The method splits the parameter estimation problem into two, with a combination of deterministic and iterative estimation techniques. The scaling and rotation parameters are estimated using a cross-correlation of image invariant image descriptors algorithm, whereas the two translation parameters are estimated with a non-parametric similarity criterion and a hill-climbing optimisation scheme. The efficacy of the method has been validated for the registration and comparison of malignant melanoma images. Determination of rotation and scaling parameters was performed using the log-polar transformation technique, which proved to be very accurate, even when high rotation and scaling values were imposed. Deviations for the rotation parameter estimations were less than 0.5%, whereas, for the scaling factor, differences were on average less than 2.5%, with a maximum difference estimated to be 4.5%. Translation parameter estimation was performed using integer similarity measures namely the stochastic sign change, the deterministic sign change (DSC) and the window value range, the performance of which has been assessed and, in all cases, was found to be highly effective. A novel hill-climbing optimisation algorithm has been proposed and, in combination with the DSC similarity criterion, was evaluated and proved to successfully estimate translation parameters. Thus the proposed hybrid registration technique can successfully estimate problem parameters in a time-efficient manner. © IFMBE: 2004. en
heal.publisher PETER PEREGRINUS LTD en
heal.journalName Medical and Biological Engineering and Computing en
dc.identifier.doi 10.1007/BF02345211 en
dc.identifier.isi ISI:000225543500007 en
dc.identifier.volume 42 en
dc.identifier.issue 6 en
dc.identifier.spage 777 en
dc.identifier.epage 786 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής