HEAL DSpace

Nonexponential decay propagator and its differential equation for real and complex energy distributions of unstable states

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Douvropoulos, TG en
dc.contributor.author Nicolaides, CA en
dc.date.accessioned 2014-03-01T01:21:08Z
dc.date.available 2014-03-01T01:21:08Z
dc.date.issued 2004 en
dc.identifier.issn 1050-2947 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16080
dc.subject.classification Optics en
dc.subject.classification Physics, Atomic, Molecular & Chemical en
dc.subject.other Electron energy levels en
dc.subject.other Fermi level en
dc.subject.other Friction en
dc.subject.other Integral equations en
dc.subject.other Ionization en
dc.subject.other Mathematical models en
dc.subject.other Mathematical transformations en
dc.subject.other Resonance en
dc.subject.other Energy distributions en
dc.subject.other Exponential decay (ED) en
dc.subject.other Lorentzian function en
dc.subject.other Nonexponential decay (NED) en
dc.subject.other Quantum theory en
dc.title Nonexponential decay propagator and its differential equation for real and complex energy distributions of unstable states en
heal.type journalArticle en
heal.identifier.primary 10.1103/PhysRevA.69.032105 en
heal.identifier.secondary http://dx.doi.org/10.1103/PhysRevA.69.032105 en
heal.identifier.secondary 032105 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract The survival amplitude G(t) of a nonstationary state decaying into a purely continuous spectrum is treated in terms of an integral transform of an energy distribution with infinity>Egreater than or equal to0. We examine three such distributions. Two are real functions, the Lorentzian g(L)(E) and a modified Lorentzian G(E)=g(L)(E)E-1/2, and one is the complex version of g(L)(E),g(c)(L)(E). Real distributions are associated with Hermitian treatments while complex ones result from non-Hermitian treatments. The difference between the two has repercussions on the G(t) for nonexponential decay (NED) and on the understanding of irreversible decay at the quantum level. For all three distributions, we derive analytically amplitudes (propagators) for NED and then show that these satisfy differential equations, from which additional insight into the decay process for very long and very short times can be obtained. By making analogy with the classical Langevin equation, the terms of the differential equation that are derived when the simpler g(L)(E) and g(c)(L)(E) are employed, are interpreted using concepts such as friction and fluctuation. On the other hand, when g(L)(E) is multiplied by an energy-dependent factor, as in G(E), the results are, as expected, more complicated and the interpretability of the differential equation satisfied by the NED propagator loses clarity. en
heal.publisher AMERICAN PHYSICAL SOC en
heal.journalName Physical Review A - Atomic, Molecular, and Optical Physics en
dc.identifier.doi 10.1103/PhysRevA.69.032105 en
dc.identifier.isi ISI:000220605200022 en
dc.identifier.volume 69 en
dc.identifier.issue 3 en
dc.identifier.spage 032105 en
dc.identifier.epage 1 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής