dc.contributor.author |
Vakakis, AF |
en |
dc.contributor.author |
Rand, RH |
en |
dc.date.accessioned |
2014-03-01T01:21:08Z |
|
dc.date.available |
2014-03-01T01:21:08Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0020-7462 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16084 |
|
dc.subject |
Capture |
en |
dc.subject |
Coupled oscillators |
en |
dc.subject |
Non-linear |
en |
dc.subject |
Resonance |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Damping |
en |
dc.subject.other |
Degrees of freedom (mechanics) |
en |
dc.subject.other |
Energy transfer |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Oscillations |
en |
dc.subject.other |
Vibrations (mechanical) |
en |
dc.subject.other |
Energy pumping |
en |
dc.subject.other |
Oscillators (mechanical) |
en |
dc.title |
Non-linear dynamics of a system of coupled oscillators with essential stiffness non-linearities |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0020-7462(03)00098-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0020-7462(03)00098-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We study the resonant dynamics of a two-degree-of-freedom system composed of a linear oscillator weakly coupled to a strongly non-linear one, with an essential (non-linearizable) cubic stiffness non-linearity. For the undamped system this leads to a series of internal resonances, depending on the level of (conserved) total energy of oscillation. We study in detail the 1:1 internal resonance, and show that the undamped system possesses stable and unstable synchronous periodic motions (non-linear normal modes - NNMs), as well as, asynchronous periodic motions (elliptic orbits - EOs). Furthermore, we show that when damping is introduced certain NNMs produce resonance capture phenomena, where a trajectory of the damped dynamics gets 'captured' in the neighborhood of a damped NNM before 'escaping' and becoming an oscillation with exponentially decaying amplitude. In turn, these resonance captures may lead to passive non-linear energy pumping phenomena from the linear to the non-linear oscillator. Thus, sustained resonance capture appears to provide a dynamical mechanism for passively transferring energy from one part of the system to another, in a one-way, irreversible fashion. Numerical integrations confirm the analytical predictions. © 2003 Elsevier Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
International Journal of Non-Linear Mechanics |
en |
dc.identifier.doi |
10.1016/S0020-7462(03)00098-2 |
en |
dc.identifier.isi |
ISI:000220480200002 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
1079 |
en |
dc.identifier.epage |
1091 |
en |