dc.contributor.author |
Duci, A |
en |
dc.contributor.author |
Papakonstantinou, K |
en |
dc.contributor.author |
Chaloulakou, A |
en |
dc.contributor.author |
Markatos, N |
en |
dc.date.accessioned |
2014-03-01T01:21:09Z |
|
dc.date.available |
2014-03-01T01:21:09Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0360-1323 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16092 |
|
dc.subject |
Air quality |
en |
dc.subject |
Carbon monoxide |
en |
dc.subject |
Enclosed garages |
en |
dc.subject |
Numerical methods |
en |
dc.subject |
Ventilation |
en |
dc.subject.classification |
Construction & Building Technology |
en |
dc.subject.classification |
Engineering, Environmental |
en |
dc.subject.classification |
Engineering, Civil |
en |
dc.subject.other |
Codes (symbols) |
en |
dc.subject.other |
Computational complexity |
en |
dc.subject.other |
Computational geometry |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Dispersions |
en |
dc.subject.other |
Garages (parking) |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Partial differential equations |
en |
dc.subject.other |
Ventilation |
en |
dc.subject.other |
Airflow transfer |
en |
dc.subject.other |
Computer codes |
en |
dc.subject.other |
geometrical complexity |
en |
dc.subject.other |
Occupational microenvironment |
en |
dc.subject.other |
Carbon monoxide |
en |
dc.subject.other |
airflow |
en |
dc.subject.other |
carbon monoxide |
en |
dc.subject.other |
garage |
en |
dc.subject.other |
ventilating system |
en |
dc.title |
Numerical approach of carbon monoxide concentration dispersion in an enclosed garage |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.buildenv.2003.11.005 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.buildenv.2003.11.005 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This paper draws attention to the lack of information about the carbon monoxide (CO) dispersion in enclosed garages, a typical occupational microenvironment, with high expected CO concentrations, where employees are exposed daily as well as garage users, and refers to the numerical prediction of CO concentration inside the garage. A mathematical model implemented in a general computer code that can provide detailed information on CO concentration as well as air flow field prevailing in three-dimensional enclosed spaces of any geometrical complexity is presented. This model involves the partial differential equations governing CO levels and airflow transfer in large enclosures. For the evaluation of the mathematical model, experimental CO concentrations measured inside are used as input data. This paper refers to a number of simulations where different ventilation rates were examined in order to provide adequate ventilation to dilute indoor CO sources and CO levels. Regarding the airflow patterns it was found that while the ventilation of indoor spaces improved the CO concentration decreased to half the value. The simulation results could be used as a base for ventilation design for enclosed garages, aimed at a proper ventilation system selection for a more healthy and comfortable working microenvironment. (C) 2003 Published by Elsevier Ltd. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
Building and Environment |
en |
dc.identifier.doi |
10.1016/j.buildenv.2003.11.005 |
en |
dc.identifier.isi |
ISI:000222127100004 |
en |
dc.identifier.volume |
39 |
en |
dc.identifier.issue |
9 |
en |
dc.identifier.spage |
1043 |
en |
dc.identifier.epage |
1048 |
en |