dc.contributor.author |
Jung, S-M |
en |
dc.contributor.author |
Rassias, TM |
en |
dc.date.accessioned |
2014-03-01T01:21:09Z |
|
dc.date.available |
2014-03-01T01:21:09Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0304-9914 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16100 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-18544386692&partnerID=40&md5=506035aa8272d9a3eb266870443234a3 |
en |
dc.subject |
Aleksandrov problem |
en |
dc.subject |
Distance-preserving mapping |
en |
dc.subject |
Isometry |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
ALEKSANDROV PROBLEM |
en |
dc.title |
On distance-preserving mappings |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
We generalize a theorem of W. Benz by proving the following result: Let H-theta be a half space of a real Hilbert space with dimension greater than or equal to 3 and let Y be a real normed space which is strictly convex. If a distance p > 0 is contractive and another distance Nrho (N greater than or equal to 2) is extensive by a mapping f : H-theta --> Y, then the restriction f\Htheta+rho/2 is an isometry, where Htheta+rho/2 is also a half space which is a proper subset of H-theta. Applying the above result, we also generalize a. classical theorem of Beckman and Quarles. |
en |
heal.publisher |
KOREAN MATHEMATICAL SOCIETY |
en |
heal.journalName |
Journal of the Korean Mathematical Society |
en |
dc.identifier.isi |
ISI:000222451400005 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
667 |
en |
dc.identifier.epage |
680 |
en |