dc.contributor.author |
Kauffman, LH |
en |
dc.contributor.author |
Lambropoulou, S |
en |
dc.date.accessioned |
2014-03-01T01:21:10Z |
|
dc.date.available |
2014-03-01T01:21:10Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0196-8858 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16106 |
|
dc.subject |
Alternating knots and links |
en |
dc.subject |
Coloring |
en |
dc.subject |
Continued fraction |
en |
dc.subject |
Flype |
en |
dc.subject |
Isotopy |
en |
dc.subject |
Knot |
en |
dc.subject |
Rational tangle |
en |
dc.subject |
Tangle |
en |
dc.subject |
Tangle fraction |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
ALTERNATING LINKS |
en |
dc.subject.other |
KNOTS |
en |
dc.subject.other |
GRAPHS |
en |
dc.subject.other |
CHAINS |
en |
dc.subject.other |
DNA |
en |
dc.title |
On the classification of rational tangles |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.aam.2003.06.002 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.aam.2003.06.002 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper we give two new combinatorial proofs of the classification of rational tangles using the calculus of continued fractions. One proof uses the classification of alternating knots. The other proof uses colorings of tangles. We also obtain an elementary proof that alternating rational tangles have minimal number of crossings. Rational tangles form a basis for the classification of knots and are of fundamental importance in the study of DNA recombination. (C) 2003 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Advances in Applied Mathematics |
en |
dc.identifier.doi |
10.1016/j.aam.2003.06.002 |
en |
dc.identifier.isi |
ISI:000222949000001 |
en |
dc.identifier.volume |
33 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
199 |
en |
dc.identifier.epage |
237 |
en |