HEAL DSpace

On the singular integrals in the source region of electromagnetic fields

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Fikioris, JG en
dc.date.accessioned 2014-03-01T01:21:11Z
dc.date.available 2014-03-01T01:21:11Z
dc.date.issued 2004 en
dc.identifier.issn 0920-5071 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16118
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.classification Physics, Applied en
dc.subject.classification Physics, Mathematical en
dc.subject.other Convergence of numerical methods en
dc.subject.other Current density en
dc.subject.other Green's function en
dc.subject.other Integral equations en
dc.subject.other Mathematical operators en
dc.subject.other Maxwell equations en
dc.subject.other Vectors en
dc.subject.other Helmholtz equation en
dc.subject.other Newton law en
dc.subject.other Electromagnetic fields en
dc.title On the singular integrals in the source region of electromagnetic fields en
heal.type journalArticle en
heal.identifier.primary 10.1163/1569393042954866 en
heal.identifier.secondary http://dx.doi.org/10.1163/1569393042954866 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Kellogg's classical theory on the singularities of integrals expressing field quantities, like potential phi or force F, in the source region V of static (gravitational or electrostatic) fields is extended to electromagnetic fields. Beyond the similarities some additional features of the latter fields are pointed out. It is shown that this classical approach leads via unambiguous and elegant steps, mainly by direct integration, to explicit results for the field vectors A, H, E of certain particular source regions and source distributions; it is further shown that these results, obtained by the author in several of his previous publications, satisfy the inhomogeneous Maxwell's equations in the source region V and the proper continuity or discontinuity conditions at the boundary of V. Said in another way, this amounts to a more or less complete study of the inhomogeneous Helmholtz equation in V. The special care with which multidimensional improper integrals should be handled to avoid errors is illustrated by means of single, double (surface) and triple (volume) integrals of specific, simple functions that can be evaluated explicitly. en
heal.publisher VSP BV en
heal.journalName Journal of Electromagnetic Waves and Applications en
dc.identifier.doi 10.1163/1569393042954866 en
dc.identifier.isi ISI:000225646100006 en
dc.identifier.volume 18 en
dc.identifier.issue 11 en
dc.identifier.spage 1505 en
dc.identifier.epage 1521 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής