dc.contributor.author |
Revesz, SGy |
en |
dc.contributor.author |
Sarantopoulos, Y |
en |
dc.date.accessioned |
2014-03-01T01:21:14Z |
|
dc.date.available |
2014-03-01T01:21:14Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0304-9914 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16150 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-7544231907&partnerID=40&md5=c42cb829339012fe347ba2c21a4aa000 |
en |
dc.subject |
Banach-Mazur distance |
en |
dc.subject |
Characterization of Banach spaces |
en |
dc.subject |
Complexification of Banach spaces |
en |
dc.subject |
Homogeneous polynomials over normed spaces |
en |
dc.subject |
Linear polarization constants |
en |
dc.subject |
Local theory of Banach spaces |
en |
dc.subject |
Plank problem |
en |
dc.subject |
Quasi-monotonous sequences |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
POLYNOMIALS |
en |
dc.subject.other |
PERMANENTS |
en |
dc.subject.other |
SPACES |
en |
dc.subject.other |
PRODUCTS |
en |
dc.subject.other |
NORMS |
en |
dc.title |
Plank problems, polarization and chebyshev constants |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this work we discuss "plank problems" for complex Banach spaces and in particular for the classical L-p(mu) spaces. In the case I less than or equal to p less than or equal to 2 we obtain optimal results and for finite dimensional complex Banach spaces, in a special case, we have improved an early result by K. Ball [3]. By using these results, in some cases we are able to find best possible lower bounds for the norms of homogeneous polynomials which are products of linear forms. In particular, we give an estimate in the case of a real Hilbert space which seems to be a difficult problem. We have also obtained some results on the so-called n-th (linear) polarization constant of a Banach space which is an isometric property of the space. Finally, known polynomial inequalities have been derived as simple consequences of various results related to plank problems. |
en |
heal.publisher |
KOREAN MATHEMATICAL SOCIETY |
en |
heal.journalName |
Journal of the Korean Mathematical Society |
en |
dc.identifier.isi |
ISI:000187944900012 |
en |
dc.identifier.volume |
41 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
157 |
en |
dc.identifier.epage |
174 |
en |