HEAL DSpace

Predicting mode choice through multivariate recursive partitioning

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Karlaftis, MG en
dc.date.accessioned 2014-03-01T01:21:14Z
dc.date.available 2014-03-01T01:21:14Z
dc.date.issued 2004 en
dc.identifier.issn 0733-947X en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16156
dc.subject Predictions en
dc.subject Transportation models en
dc.subject Transportation planning en
dc.subject Travel demand en
dc.subject.classification Engineering, Civil en
dc.subject.classification Transportation Science & Technology en
dc.subject.other Forecasting en
dc.subject.other Mathematical models en
dc.subject.other Mathematical techniques en
dc.subject.other Multivariate recursive partitioning en
dc.subject.other Transportation en
dc.subject.other modeling en
dc.subject.other prediction en
dc.subject.other transportation mode en
dc.subject.other travel behavior en
dc.subject.other travel demand en
dc.title Predicting mode choice through multivariate recursive partitioning en
heal.type journalArticle en
heal.identifier.primary 10.1061/(ASCE)0733-947X(2004)130:2(245) en
heal.identifier.secondary http://dx.doi.org/10.1061/(ASCE)0733-947X(2004)130:2(245) en
heal.language English en
heal.publicationDate 2004 en
heal.abstract Understanding and predicting individual mode choice decisions can help address issues ranging from forecasting demand for new modes of transport to understanding the underlying traveler behavior and characteristics. Early research in mode choice modeling revolved, almost exclusively, around the family of logit models. But a number of researchers have recently argued that these models place restrictions on their parameters that compromise their performance and have thus experimented with a number of newly developed, flexible mathematical techniques. The present paper extends prior research by developing a methodology for predicting individual mode choice based on a nonparametric classification methodology that imposes very few constraining assumptions in yielding mode choice predictions. Preliminary results, using data from three vastly different international settings, are promising, especially when considering that the models are successful while using only a limited number of independent variables to achieve these predictions. © ASCE / MARCH/APRIL 2004. en
heal.publisher ASCE-AMER SOC CIVIL ENGINEERS en
heal.journalName Journal of Transportation Engineering en
dc.identifier.doi 10.1061/(ASCE)0733-947X(2004)130:2(245) en
dc.identifier.isi ISI:000220045900011 en
dc.identifier.volume 130 en
dc.identifier.issue 2 en
dc.identifier.spage 245 en
dc.identifier.epage 250 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής