dc.contributor.author |
Tsinias, J |
en |
dc.date.accessioned |
2014-03-01T01:21:15Z |
|
dc.date.available |
2014-03-01T01:21:15Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0018-9286 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16166 |
|
dc.subject |
Global asymptotic controllability |
en |
dc.subject |
Stabilization |
en |
dc.subject.classification |
Automation & Control Systems |
en |
dc.subject.classification |
Engineering, Electrical & Electronic |
en |
dc.subject.other |
Asymptotic stability |
en |
dc.subject.other |
Feedback |
en |
dc.subject.other |
Global optimization |
en |
dc.subject.other |
Integration |
en |
dc.subject.other |
Theorem proving |
en |
dc.subject.other |
Clarke-Ledyaev-Sontag-Subbotin theorem |
en |
dc.subject.other |
Global asymptotic controllability |
en |
dc.subject.other |
Static feedback |
en |
dc.subject.other |
Controllability |
en |
dc.title |
Propagating asymptotic controllability through integrators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TAC.2003.821403 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TAC.2003.821403 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
For a class of systems with triangular structure, we derive sufficient conditions for global asymptotic controllability which, according to Clarke-Ledyaev-Sontag-Subbotin theorem, guarantees asymptotic stabilization by discontinuous static feedback. |
en |
heal.publisher |
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
en |
heal.journalName |
IEEE Transactions on Automatic Control |
en |
dc.identifier.doi |
10.1109/TAC.2003.821403 |
en |
dc.identifier.isi |
ISI:000188197000017 |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
134 |
en |
dc.identifier.epage |
141 |
en |