HEAL DSpace

Reinforcement learning for reactive power control

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vlachogiannis, JG en
dc.contributor.author Hatziargyriou, ND en
dc.date.accessioned 2014-03-01T01:21:18Z
dc.date.available 2014-03-01T01:21:18Z
dc.date.issued 2004 en
dc.identifier.issn 0885-8950 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16189
dc.subject constrained load flow en
dc.subject Q-learning algorithm en
dc.subject reinforcement learning en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Approximation theory en
dc.subject.other Busbars en
dc.subject.other Closed loop control systems en
dc.subject.other Control system analysis en
dc.subject.other Convergence of numerical methods en
dc.subject.other Dynamic programming en
dc.subject.other Iterative methods en
dc.subject.other Learning algorithms en
dc.subject.other Learning systems en
dc.subject.other Nonlinear control systems en
dc.subject.other Power control en
dc.subject.other Reactive power en
dc.subject.other Constrained load flow en
dc.subject.other Multistage decision problem en
dc.subject.other Offline control settings en
dc.subject.other Q learning algorithm en
dc.subject.other Reinforcement learning en
dc.subject.other Electric load flow en
dc.title Reinforcement learning for reactive power control en
heal.type journalArticle en
heal.identifier.primary 10.1109/TPWRS.2004.831259 en
heal.identifier.secondary http://dx.doi.org/10.1109/TPWRS.2004.831259 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract This paper presents a Reinforcement Learning (RL) method for network constrained setting of control variables. The RL method formulates the constrained load flow problem as a multistage decision problem. More specifically, the model-free learning algorithm (Q-learning) learns by experience how to adjust a closed-loop control rule mapping states (load flow solutions) to control actions (offline control settings) by means of reward values. Rewards are chosen to express how well control actions cause satisfaction of operating constraints. The Q-learning algorithm is applied to the IEEE 14 busbar and to the IEEE 136 busbar system for constrained reactive power control. The results are compared with those given by the probabilistic constrained load flow based on sensitivity analysis demonstrating the advantages and flexibility of the Q-learning algorithm. Computing times with another heuristic method is also compared. © 2004 IEEE. en
heal.publisher IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC en
heal.journalName IEEE Transactions on Power Systems en
dc.identifier.doi 10.1109/TPWRS.2004.831259 en
dc.identifier.isi ISI:000222975800009 en
dc.identifier.volume 19 en
dc.identifier.issue 3 en
dc.identifier.spage 1317 en
dc.identifier.epage 1325 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής