HEAL DSpace

Rule-driven object tracking in clutter and partial occlusion with model-based snakes

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsechpenakis, G en
dc.contributor.author Rapantzikos, K en
dc.contributor.author Tsapatsoulis, N en
dc.contributor.author Kollias, S en
dc.date.accessioned 2014-03-01T01:21:18Z
dc.date.available 2014-03-01T01:21:18Z
dc.date.issued 2004 en
dc.identifier.issn 1110-8657 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16197
dc.subject Model-based snakes en
dc.subject Object partial occlusion en
dc.subject Rule-driven tracking en
dc.subject.classification Engineering, Electrical & Electronic en
dc.subject.other Algorithms en
dc.subject.other Approximation theory en
dc.subject.other Computational complexity en
dc.subject.other Estimation en
dc.subject.other Image quality en
dc.subject.other Mathematical models en
dc.subject.other Problem solving en
dc.subject.other Model-based snakes en
dc.subject.other Object partial occlusion en
dc.subject.other Rule-driven tracking en
dc.subject.other Video sequences en
dc.subject.other Computer vision en
dc.title Rule-driven object tracking in clutter and partial occlusion with model-based snakes en
heal.type journalArticle en
heal.identifier.primary 10.1155/S1110865704401103 en
heal.identifier.secondary http://dx.doi.org/10.1155/S1110865704401103 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract In the last few years it has been made clear to the research community that further improvements in classic approaches for solving low-level computer vision and image/video understanding tasks are difficult to obtain. New approaches started evolving, employing knowledge-based processing, though transforming a priori knowledge to low-level models and rules are far from being straightforward. In this paper, we examine one of the most popular active contour models, snakes, and propose a snake model, modifying terms and introducing a model-based one that eliminates basic problems through the usage of prior shape knowledge in the model. A probabilistic rule-driven utilization of the proposed model follows, being able to handle (or cope with) objects of different shapes, contour complexities and motions; different environments, indoor and outdoor; cluttered sequences; and cases where background is complex (not smooth) and when moving objects get partially occluded. The proposed method has been tested in a variety of sequences and the experimental results verify its efficiency., en
heal.publisher HINDAWI PUBLISHING CORPORATION en
heal.journalName Eurasip Journal on Applied Signal Processing en
dc.identifier.doi 10.1155/S1110865704401103 en
dc.identifier.isi ISI:000223382900006 en
dc.identifier.volume 2004 en
dc.identifier.issue 6 en
dc.identifier.spage 841 en
dc.identifier.epage 860 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής