dc.contributor.author |
Dafalias, YF |
en |
dc.contributor.author |
Manzari, MT |
en |
dc.date.accessioned |
2014-03-01T01:21:24Z |
|
dc.date.available |
2014-03-01T01:21:24Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0733-9399 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16222 |
|
dc.subject |
Constitutive relations |
en |
dc.subject |
Fabrics |
en |
dc.subject |
Models |
en |
dc.subject |
Plasticity |
en |
dc.subject |
Sand |
en |
dc.subject.classification |
Engineering, Mechanical |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Cyclic loads |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Plasticity |
en |
dc.subject.other |
Pressure effects |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Sand models |
en |
dc.subject.other |
Stress space |
en |
dc.subject.other |
Sand |
en |
dc.subject.other |
fabric |
en |
dc.title |
Simple plasticity sand model accounting for fabric change effects |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1061/(ASCE)0733-9399(2004)130:6(622) |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622) |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
A simple stress-ratio controlled, critical state compatible, sand plasticity model is presented, first in the triaxial and then in generalized stress space. The model builds upon previous work of the writers, albeit the presentation here is made with extreme simplicity in mind, and three novel aspects are introduced. The first is a fabric-dilatancy related quantity, scalar valued in the triaxial and tensor valued in generalized stress space, which is instrumental in modeling macroscopically the effect of fabric changes during the dilatant phase of deformation on the subsequent contractant response upon load increment reversals, and the ensuing realistic simulation of the sand behavior under undrained cyclic loading. The second aspect is the dependence of the plastic strain rate direction on a modified Lode angle in the multiaxial generalization, a feature necessary to produce realistic stress-strain simulations in nontriaxial conditions. The third aspect is a very systematic connection between the simple triaxial and the general multiaxial formulation, in order to use correctly the model parameters of the former in the implementation of the latter. The simulative ability of the model is illustrated by comparison with data over a very wide range of pressures and densities. © ASCE / JUNE 2004. |
en |
heal.publisher |
ASCE-AMER SOC CIVIL ENGINEERS |
en |
heal.journalName |
Journal of Engineering Mechanics |
en |
dc.identifier.doi |
10.1061/(ASCE)0733-9399(2004)130:6(622) |
en |
dc.identifier.isi |
ISI:000221608700002 |
en |
dc.identifier.volume |
130 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
622 |
en |
dc.identifier.epage |
634 |
en |