dc.contributor.author |
Provatidis, CG |
en |
dc.date.accessioned |
2014-03-01T01:21:26Z |
|
dc.date.available |
2014-03-01T01:21:26Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1069-8299 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16240 |
|
dc.subject |
Finite elements |
en |
dc.subject |
Global approximation |
en |
dc.subject |
Macro elements |
en |
dc.subject |
Poisson problems |
en |
dc.subject |
Transfinite Coons interpolation |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.other |
Approximation theory |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Interpolation |
en |
dc.subject.other |
Poisson equation |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Neuman boundary conditions |
en |
dc.subject.other |
Two dimensional Poisson problems |
en |
dc.subject.other |
Boundary value problems |
en |
dc.subject.other |
mathematical analysis |
en |
dc.title |
Solution of two-dimensional Poisson problems in quadrilateral domains using transfinite Coons interpolation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1002/cnm.690 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1002/cnm.690 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This paper proposes a global approximation method to solve elliptic boundary value Poisson problems in arbitrary shaped 2-D domains. Using transfinite interpolation, a symmetric finite element formulation is derived for degrees of freedom arranged mostly along the boundary of the domain. In cases where both Dirichlet and Neumann boundary conditions occur, the numerical solution is based on bivariate Coons interpolation using the boundary only. Furthermore, in case of only Dirichlet boundary conditions and no existing axes of symmetry, it is proposed to use at least one internal point and apply transfinite interpolation. The theory is sustained by five numerical examples applied to domains of square, circular and elliptic shape. Copyright (C) 2004 John Wiley Sons, Ltd. |
en |
heal.publisher |
JOHN WILEY & SONS LTD |
en |
heal.journalName |
Communications in Numerical Methods in Engineering |
en |
dc.identifier.doi |
10.1002/cnm.690 |
en |
dc.identifier.isi |
ISI:000222538700003 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
7 |
en |
dc.identifier.spage |
521 |
en |
dc.identifier.epage |
533 |
en |