dc.contributor.author |
Filippakis, ME |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:21:27Z |
|
dc.date.available |
2014-03-01T01:21:27Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
10853375 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16241 |
|
dc.subject |
Existence Theorem |
en |
dc.subject |
lower semicontinuity |
en |
dc.subject |
nonsmooth critical point theory |
en |
dc.subject |
Positive Solution |
en |
dc.subject |
Variational Inequality |
en |
dc.title |
Solutions for nonlinear variational inequalities with a nonsmooth potential |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/S1085337504312017 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/S1085337504312017 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
First we examine a resonant variational inequality driven by the p-Laplacian and with a nonsmooth potential. We prove the existence of a nontrivial solution. Then we use this existence theorem to obtain nontrivial positive solutions for a class of resonant elliptic equations involving the p-Laplacian and a nonsmooth potential. Our approach is variational based on the nonsmooth critical point theory for functionals of the form φ = φ1 + φ2 with φ2 locally Lipschitz and 2 proper, convex, lower semicontinuous. |
en |
heal.journalName |
Abstract and Applied Analysis |
en |
dc.identifier.doi |
10.1155/S1085337504312017 |
en |
dc.identifier.volume |
2004 |
en |
dc.identifier.issue |
8 |
en |
dc.identifier.spage |
635 |
en |
dc.identifier.epage |
649 |
en |