dc.contributor.author |
Koutsoyiannis, D |
en |
dc.date.accessioned |
2014-03-01T01:21:28Z |
|
dc.date.available |
2014-03-01T01:21:28Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0262-6667 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16248 |
|
dc.subject |
Design rainfall |
en |
dc.subject |
Extreme rainfall |
en |
dc.subject |
Generalized extreme value distribution |
en |
dc.subject |
Gumbel distribution |
en |
dc.subject |
Hydrological design |
en |
dc.subject |
Hydrological extremes |
en |
dc.subject |
Probable maximum precipitation |
en |
dc.subject |
Risk |
en |
dc.subject.classification |
Water Resources |
en |
dc.subject.other |
Data reduction |
en |
dc.subject.other |
Geographical regions |
en |
dc.subject.other |
Hydrology |
en |
dc.subject.other |
Statistical methods |
en |
dc.subject.other |
Gumbel distribution |
en |
dc.subject.other |
Rain |
en |
dc.subject.other |
extreme event |
en |
dc.subject.other |
hydrological regime |
en |
dc.subject.other |
rainfall |
en |
dc.subject.other |
risk assessment |
en |
dc.subject.other |
statistical analysis |
en |
dc.title |
Statistics of extremes and estimation of extreme rainfall: II. Empirical investigation of long rainfall records |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1623/hysj.49.4.591.54424 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1623/hysj.49.4.591.54424 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In the first part of this study, theoretical analyses showed that the Gumbel distribution is quite unlikely to apply to hydrological extremes and that the extreme value distribution of type II (EV2) is a more consistent choice. Based on these theoretical analyses, an extensive empirical investigation is performed using a collection of 169 of the longest available rainfall records worldwide, each having 100-154 years of data. This verifies the theoretical results. In addition, it shows that the shape parameter of the EV2 distribution is constant for all examined geographical zones (Europe and North America), with value kappa = 0.15. This simplifies the fitting and the general mathematical handling of the distribution, which become as simple as those of the Gumbel distribution. |
en |
heal.publisher |
IAHS PRESS, INST HYDROLOGY |
en |
heal.journalName |
Hydrological Sciences Journal |
en |
dc.identifier.doi |
10.1623/hysj.49.4.591.54424 |
en |
dc.identifier.isi |
ISI:000222737000004 |
en |
dc.identifier.volume |
49 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
591 |
en |
dc.identifier.epage |
610 |
en |