dc.contributor.author |
Stefanou, G |
en |
dc.contributor.author |
Papadrakakis, M |
en |
dc.date.accessioned |
2014-03-01T01:21:28Z |
|
dc.date.available |
2014-03-01T01:21:28Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16249 |
|
dc.subject |
Response variability |
en |
dc.subject |
Shell finite element |
en |
dc.subject |
Spectral representation |
en |
dc.subject |
Stochastic analysis |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Finite element method |
en |
dc.subject.other |
Monte Carlo methods |
en |
dc.subject.other |
Poisson ratio |
en |
dc.subject.other |
Random processes |
en |
dc.subject.other |
Geometric properties |
en |
dc.subject.other |
Spectral representation methods |
en |
dc.subject.other |
Shells (structures) |
en |
dc.subject.other |
finite element method |
en |
dc.title |
Stochastic finite element analysis of shells with combined random material and geometric properties |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cma.2003.10.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cma.2003.10.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this work, an extended stochastic formulation of the triangular composite facet shell element TRIC is presented for the case of combined uncertain material (Young's modulus, Poisson's ratio) and geometric (thickness) properties. These properties are assumed to be described by uncorrelated two-dimensional homogeneous stochastic fields. The stochastic finite element analysis of shell structures is performed using the spectral representation method for the description of the random fields in conjunction with Monte Carlo simulation (MCS) for the computation of the response variability. Useful conclusions regarding the influence of each one of the structural parameters on the response variability are derived from the numerical tests examined. (C) 2003 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
Computer Methods in Applied Mechanics and Engineering |
en |
dc.identifier.doi |
10.1016/j.cma.2003.10.001 |
en |
dc.identifier.isi |
ISI:000187750200007 |
en |
dc.identifier.volume |
193 |
en |
dc.identifier.issue |
1-2 |
en |
dc.identifier.spage |
139 |
en |
dc.identifier.epage |
160 |
en |