dc.contributor.author |
Theodoropoulou, S |
en |
dc.contributor.author |
Papadimitriou, D |
en |
dc.contributor.author |
Zoumpoulakis, L |
en |
dc.contributor.author |
Simitzis, J |
en |
dc.date.accessioned |
2014-03-01T01:21:28Z |
|
dc.date.available |
2014-03-01T01:21:28Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
1618-2642 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16250 |
|
dc.subject |
FTIR |
en |
dc.subject |
PL |
en |
dc.subject |
Pyrolytic carbon |
en |
dc.subject |
Raman |
en |
dc.subject |
XRD |
en |
dc.subject.classification |
Biochemical Research Methods |
en |
dc.subject.classification |
Chemistry, Analytical |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Chemical bonds |
en |
dc.subject.other |
Crosslinking |
en |
dc.subject.other |
Curing |
en |
dc.subject.other |
Fourier transform infrared spectroscopy |
en |
dc.subject.other |
High temperature effects |
en |
dc.subject.other |
Optical properties |
en |
dc.subject.other |
Photoluminescence |
en |
dc.subject.other |
Pyrolysis |
en |
dc.subject.other |
Raman spectroscopy |
en |
dc.subject.other |
Resins |
en |
dc.subject.other |
Structure (composition) |
en |
dc.subject.other |
X ray diffraction analysis |
en |
dc.subject.other |
Graphitic carbons |
en |
dc.subject.other |
Novolac resins |
en |
dc.subject.other |
Pyrolytic carbon |
en |
dc.subject.other |
Room temperature |
en |
dc.subject.other |
Carbon |
en |
dc.subject.other |
carbon |
en |
dc.subject.other |
polymer |
en |
dc.subject.other |
article |
en |
dc.subject.other |
biomass |
en |
dc.subject.other |
chemistry |
en |
dc.subject.other |
fire |
en |
dc.subject.other |
infrared spectroscopy |
en |
dc.subject.other |
Raman spectrometry |
en |
dc.subject.other |
spectroscopy |
en |
dc.subject.other |
Biomass |
en |
dc.subject.other |
Carbon |
en |
dc.subject.other |
Fires |
en |
dc.subject.other |
Polymers |
en |
dc.subject.other |
Spectroscopy, Fourier Transform Infrared |
en |
dc.subject.other |
Spectrum Analysis |
en |
dc.subject.other |
Spectrum Analysis, Raman |
en |
dc.title |
Structural and optical characterization of pyrolytic carbon derived from novolac resin |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s00216-003-2453-5 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s00216-003-2453-5 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The structural and optical properties of technologically interesting pyrolytic carbons formed from cured novolac resin and cured novolac/biomass composites were studied by X-Ray Diffraction Analysis (XRD), and Fourier Transform Infrared (FTIR), Raman and Photoluminescence (PL) spectroscopy. Pyrolysis of the cured materials took place at temperatures in the range 400-1000 degreesC. The most important weight loss, shrinkage and structural changes of pyrolyzed composites are observed at temperatures up to 600degreesC due to the olive stone component. In the same temperature range, the changes in pyrolyzed novolac are smaller. The spectroscopic analysis shows that novolac pyrolyzed up to 900degreesC has less defects and disorder than the composites. However, above 900degreesC, pyrolyzed novolac becomes more disordered compared to the pyrolyzed composites. It is concluded that partial replacement of novolac by olive stone in the composite materials leads to the formation of a low cost, good quality product. |
en |
heal.publisher |
SPRINGER HEIDELBERG |
en |
heal.journalName |
Analytical and Bioanalytical Chemistry |
en |
dc.identifier.doi |
10.1007/s00216-003-2453-5 |
en |
dc.identifier.isi |
ISI:000223474200009 |
en |
dc.identifier.volume |
379 |
en |
dc.identifier.issue |
5-6 |
en |
dc.identifier.spage |
788 |
en |
dc.identifier.epage |
791 |
en |