dc.contributor.author |
Vairaktaris, E |
en |
dc.contributor.author |
Vardoulakis, I |
en |
dc.contributor.author |
Papamichos, E |
en |
dc.contributor.author |
Dougalis, V |
en |
dc.date.accessioned |
2014-03-01T01:21:34Z |
|
dc.date.available |
2014-03-01T01:21:34Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0045-7825 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16258 |
|
dc.subject |
subsidence diffusion |
en |
dc.subject |
convection |
en |
dc.subject.classification |
Engineering, Multidisciplinary |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.title |
Subsidence diffusion-convection. II. The inverse problem |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.cma.2003.10.018 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.cma.2003.10.018 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Considering the results of Part I of this study concerning the direct subsidence diffusion-convection (DSDC) problem we present in this paper the inverse SDC (ISDC) problem. For the regularization of the original ill-posed problem we use and compare two kinds of regularization proposals: Lions u(xixixixi)-method and the presently proposed u(xixiss)-method. Stability in the sense of the von Neumann condition is ensured and a first approach to convergence is done in the sense of the norm of the amplification factor. Another convergence study is given in terms of the truncation error. (C) 2004 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE SA |
en |
heal.journalName |
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING |
en |
dc.identifier.doi |
10.1016/j.cma.2003.10.018 |
en |
dc.identifier.isi |
ISI:000221974100008 |
en |
dc.identifier.volume |
193 |
en |
dc.identifier.issue |
27-29 |
en |
dc.identifier.spage |
2761 |
en |
dc.identifier.epage |
2770 |
en |