dc.contributor.author |
Nikas, K-SP |
en |
dc.contributor.author |
Iacovides, H |
en |
dc.date.accessioned |
2014-03-01T01:21:37Z |
|
dc.date.available |
2014-03-01T01:21:37Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0961-5539 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16270 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-1842431051&partnerID=40&md5=a30be18e9e7a5f7866650eaa725ad96f |
en |
dc.subject |
Flow measurement |
en |
dc.subject |
Heat transfer |
en |
dc.subject |
Modelling |
en |
dc.subject |
Turbulent flow |
en |
dc.subject.classification |
Thermodynamics |
en |
dc.subject.classification |
Mathematics, Interdisciplinary Applications |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Flow measurement |
en |
dc.subject.other |
Heat flux |
en |
dc.subject.other |
Kinetic energy |
en |
dc.subject.other |
Nusselt number |
en |
dc.subject.other |
Prandtl number |
en |
dc.subject.other |
Reynolds number |
en |
dc.subject.other |
Stress analysis |
en |
dc.subject.other |
Tensors |
en |
dc.subject.other |
Turbulence |
en |
dc.subject.other |
Turbulent flow |
en |
dc.subject.other |
Reynolds stress |
en |
dc.subject.other |
Turbulence modeling |
en |
dc.subject.other |
Heat transfer |
en |
dc.subject.other |
bend |
en |
dc.subject.other |
fluid flow |
en |
dc.subject.other |
heat transfer |
en |
dc.subject.other |
pipe |
en |
dc.title |
The computation of flow and heat transfer through square-ended U-bends, using low-Reynolds-number models |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
This study is concerned with the computation of turbulent flow and heat transfer in U-bends of strong curvature. Following the earlier studies within the authors' group on flows through round-ended U-bends, here attention is turned to flows through square-ended U-bends. Flows at two Reynolds numbers have been computed, one at 100,000 and the other at 36,000. In the heat transfer analysis, the Prandtl number was either 0.72 (air) or, in a further departure from our earlier studies, 5.9 (water). The turbulence modelling approaches examined, include a two-layer and a low-Re k-ε. model, a two-layer and a low-Re version of the basic differential stress model (DSM) and a more recently developed, realisable version of the differential stress model that is free of wall-parameters. For the low-Re effective viscosity model (EVM) and DSMs, an alternative, recently proposed length-scale correction term, independent of wall distance has also been tested. Even the simplest model employed - two-layer EVM - reproduces the mean flow development with reasonable accuracy, suggesting that the mean flow development is mainly influenced by mean pressure rather than the turbulence field. The heat transfer parameters, on the other hand, show that only the low-Re DSMs produce reliable Nusselt number predictions for both Prandtl numbers examined. |
en |
heal.publisher |
EMERALD GROUP PUBLISHING LIMITED |
en |
heal.journalName |
International Journal of Numerical Methods for Heat and Fluid Flow |
en |
dc.identifier.isi |
ISI:000223932800003 |
en |
dc.identifier.volume |
14 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
305 |
en |
dc.identifier.epage |
324 |
en |