HEAL DSpace

The neumann problem for quasilinear differential equations

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Cardinali, T en
dc.contributor.author Papageorgiou, NS en
dc.contributor.author Servadei, R en
dc.date.accessioned 2014-03-01T01:21:38Z
dc.date.available 2014-03-01T01:21:38Z
dc.date.issued 2004 en
dc.identifier.issn 00448753 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16279
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-12844260789&partnerID=40&md5=af301a7415444f2c611d4335db928b01 en
dc.relation.uri http://mathnet.preprints.org/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.kurims.kyoto-u.ac.jp/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.maths.tcd.ie/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.emis.de/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://emis.math.ca/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://emis.maths.adelaide.edu.au/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.ii.uj.edu.pl/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.mat.ub.es/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.math.ethz.ch/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.mat.ub.edu/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.maths.soton.ac.uk/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://emis.luc.ac.be/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://emis.library.cornell.edu/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.math.helsinki.fi/EMIS/journals/AM/04-4/am1140.pdf en
dc.relation.uri http://www.emis.math.ca/EMIS/journals/AM/04-4/am1140.pdf en
dc.subject Differential Equation en
dc.subject Neumann Problem en
dc.subject Penalty Function en
dc.title The neumann problem for quasilinear differential equations en
heal.type journalArticle en
heal.publicationDate 2004 en
heal.abstract In this note we prove the existence of extremal solutions of the quasilinear Neumann problem -(|x′(t)|p-2x′(t))′ = f(t, x(t), x′(t)), a.e. on T, x′(0) = x′(b) = 0, 2 ≤ p < ∞ in the order interval [ψ, φ], where ψ and φ are respectively a lower and an upper solution of the Neumann problem. upper solution, lower solution, order interval, truncation function, penalty function, pseudomonotone operator, coercive operator, Leray-Schauder principle, maximal solution, minimal solution. en
heal.journalName Archivum Mathematicum en
dc.identifier.volume 40 en
dc.identifier.issue 4 en
dc.identifier.spage 321 en
dc.identifier.epage 333 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής