dc.contributor.author |
Cardinali, T |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Servadei, R |
en |
dc.date.accessioned |
2014-03-01T01:21:38Z |
|
dc.date.available |
2014-03-01T01:21:38Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
00448753 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16279 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-12844260789&partnerID=40&md5=af301a7415444f2c611d4335db928b01 |
en |
dc.relation.uri |
http://mathnet.preprints.org/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.kurims.kyoto-u.ac.jp/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.maths.tcd.ie/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.emis.de/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://emis.math.ca/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://emis.maths.adelaide.edu.au/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.ii.uj.edu.pl/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.mat.ub.es/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.math.ethz.ch/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.mat.ub.edu/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.maths.soton.ac.uk/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://emis.luc.ac.be/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://emis.library.cornell.edu/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.math.helsinki.fi/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.relation.uri |
http://www.emis.math.ca/EMIS/journals/AM/04-4/am1140.pdf |
en |
dc.subject |
Differential Equation |
en |
dc.subject |
Neumann Problem |
en |
dc.subject |
Penalty Function |
en |
dc.title |
The neumann problem for quasilinear differential equations |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this note we prove the existence of extremal solutions of the quasilinear Neumann problem -(|x′(t)|p-2x′(t))′ = f(t, x(t), x′(t)), a.e. on T, x′(0) = x′(b) = 0, 2 ≤ p < ∞ in the order interval [ψ, φ], where ψ and φ are respectively a lower and an upper solution of the Neumann problem. upper solution, lower solution, order interval, truncation function, penalty function, pseudomonotone operator, coercive operator, Leray-Schauder principle, maximal solution, minimal solution. |
en |
heal.journalName |
Archivum Mathematicum |
en |
dc.identifier.volume |
40 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
321 |
en |
dc.identifier.epage |
333 |
en |