dc.contributor.author |
Symeonaki, MA |
en |
dc.contributor.author |
Stamou, GB |
en |
dc.date.accessioned |
2014-03-01T01:21:38Z |
|
dc.date.available |
2014-03-01T01:21:38Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0165-0114 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16284 |
|
dc.subject |
Decision analysis |
en |
dc.subject |
Fuzzy dynamical systems |
en |
dc.subject |
Fuzzy system models |
en |
dc.subject |
Markov models |
en |
dc.subject.classification |
Computer Science, Theory & Methods |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Statistics & Probability |
en |
dc.subject.other |
Asymptotic stability |
en |
dc.subject.other |
Boundary conditions |
en |
dc.subject.other |
Decision theory |
en |
dc.subject.other |
Markov processes |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Matrix algebra |
en |
dc.subject.other |
Parameter estimation |
en |
dc.subject.other |
Fuzzy dynamical systems |
en |
dc.subject.other |
Fuzzy system models |
en |
dc.subject.other |
Markov models |
en |
dc.subject.other |
Fuzzy sets |
en |
dc.title |
Theory of Markov systems with fuzzy states |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0165-0114(03)00016-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0165-0114(03)00016-2 |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In this paper the theory of fuzzy logic is combined with the theory of Markov systems and the concept of a Markov system with fuzzy states is introduced for the first time. The main objective is to develop a methodology of describing a Markov population system with fuzzy states. This is an effort to deal with the fact that in real applications one is often faced with fuzzy states. This paper investigates the properties of a Markov system with states that have imprecise boundaries. A full description of a nonhomogeneous Markov system with fuzzy states is outlined and the basic parameters of the system are provided. More specifically, the expected population structure of the system is found and given in a closed analytic form and the asymptotic behaviour of the system is provided under the more realistic assumption of a fuzzy set space. (C) 2003 Elsevier B.V. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE BV |
en |
heal.journalName |
Fuzzy Sets and Systems |
en |
dc.identifier.doi |
10.1016/S0165-0114(03)00016-2 |
en |
dc.identifier.isi |
ISI:000220891000006 |
en |
dc.identifier.volume |
143 |
en |
dc.identifier.issue |
3 |
en |
dc.identifier.spage |
427 |
en |
dc.identifier.epage |
445 |
en |