dc.contributor.author |
Voutsas, E |
en |
dc.contributor.author |
Magoulas, K |
en |
dc.contributor.author |
Tassios, D |
en |
dc.date.accessioned |
2014-03-01T01:21:40Z |
|
dc.date.available |
2014-03-01T01:21:40Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
0888-5885 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16309 |
|
dc.subject |
Equation of State |
en |
dc.subject |
Mixing Rule |
en |
dc.subject |
Peng Robinson |
en |
dc.subject.classification |
Engineering, Chemical |
en |
dc.subject.other |
Free energy |
en |
dc.subject.other |
Gibbs free energy |
en |
dc.subject.other |
High pressure effects |
en |
dc.subject.other |
Thermodynamics |
en |
dc.subject.other |
Equilibrium predictions |
en |
dc.subject.other |
Peng-Robinson equation of state |
en |
dc.subject.other |
Universal mixing rules |
en |
dc.subject.other |
Equations of state |
en |
dc.subject.other |
asymmetric flow |
en |
dc.subject.other |
mathematical method |
en |
dc.subject.other |
mixing |
en |
dc.subject.other |
article |
en |
dc.subject.other |
combinatorial chemistry |
en |
dc.subject.other |
concentration response |
en |
dc.subject.other |
energy |
en |
dc.subject.other |
model |
en |
dc.subject.other |
system analysis |
en |
dc.title |
Universal mixing rule for cubic equations of state applicable to symmetric and asymmetric systems: Results with the Peng-Robinson equation of state |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1021/ie049580p |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1021/ie049580p |
en |
heal.language |
English |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
A mixing rule for cubic equations of state (CEoS) applicable to all types of system asymmetries-referred to hereafter as the universal mixing rule (UMR)-is proposed. For the cohesion parameter of the CEoS, the mixing rule involves the Staverman-Guggenheim part of the combinatorial term and the residual term of the original UNIFAC Gibbs free energy expression. For the covolume parameter of the CEoS, the quadratic concentration-dependent mixing rule is used with the combining rule for the cross parameter b(ij) = [1/2(b(i)(1/2) + b(j)(1/2))](2). This UMR is applied to the volume-translated and modified version of the Peng-Robinson equation of state of Magoulas and Tassios (Fluid Phase Equillb. 1990, 56, 119), leading to what is referred to as the UMR-PR model. Very satisfactory results are obtained using the existing interaction parameters of the original UNIFAC model for vapor-liquid equilibrium predictions at low and high pressures for a wide range of system asymmetries including mixtures containing polymers. Satisfactory liquid-liquid equilibrium predictions are also obtained with the UMR-PR model. |
en |
heal.publisher |
AMER CHEMICAL SOC |
en |
heal.journalName |
Industrial and Engineering Chemistry Research |
en |
dc.identifier.doi |
10.1021/ie049580p |
en |
dc.identifier.isi |
ISI:000223807400033 |
en |
dc.identifier.volume |
43 |
en |
dc.identifier.issue |
19 |
en |
dc.identifier.spage |
6238 |
en |
dc.identifier.epage |
6246 |
en |