HEAL DSpace

Virtual braids

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Kauffman, LH en
dc.contributor.author Lambropoulou, S en
dc.date.accessioned 2014-03-01T01:21:41Z
dc.date.available 2014-03-01T01:21:41Z
dc.date.issued 2004 en
dc.identifier.issn 0016-2736 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16317
dc.subject Braid Group en
dc.subject Virtual Knot en
dc.subject.classification Mathematics en
dc.subject.other FORBIDDEN MOVES en
dc.subject.other FINITE-TYPE en
dc.subject.other KNOT-THEORY en
dc.subject.other INVARIANTS en
dc.title Virtual braids en
heal.type journalArticle en
heal.identifier.primary 10.4064/fm184-0-11 en
heal.identifier.secondary http://dx.doi.org/10.4064/fm184-0-11 en
heal.language English en
heal.publicationDate 2004 en
heal.abstract This paper gives a new method for converting virtual knots and links to virtual braids. Indeed, the braiding method given here is quite general and applies to all the categories in which braiding can be accomplished. This includes the braiding of classical, virtual, flat, welded, unrestricted, and singular knots and links. We also give reduced presentations for the virtual braid group and for the flat virtual braid group (as well as for other categories). These reduced presentations are based on the fact that these virtual braid groups for n strands are generated by a single braiding element plus the generators of the symmetric group on n letters. en
heal.publisher POLISH ACAD SCIENCES INST MATHEMATICS en
heal.journalName Fundamenta Mathematicae en
dc.identifier.doi 10.4064/fm184-0-11 en
dc.identifier.isi ISI:000229360400012 en
dc.identifier.volume 184 en
dc.identifier.issue 1-3 en
dc.identifier.spage 159 en
dc.identifier.epage 186 en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record