HEAL DSpace

A BEM solution to transverse shear loading of beams

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sapountzakis, EJ en
dc.contributor.author Mokos, VG en
dc.date.accessioned 2014-03-01T01:21:42Z
dc.date.available 2014-03-01T01:21:42Z
dc.date.issued 2005 en
dc.identifier.issn 0178-7675 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16325
dc.subject Beam en
dc.subject Boundary element method en
dc.subject Effect of Poisson's ratio en
dc.subject Principal shear axes en
dc.subject Shear center en
dc.subject Shear deformation coefficients en
dc.subject Transverse shear stresses en
dc.subject.classification Mathematics, Interdisciplinary Applications en
dc.subject.classification Mechanics en
dc.subject.other Boundary element method en
dc.subject.other Boundary value problems en
dc.subject.other Elasticity en
dc.subject.other Shear deformation en
dc.subject.other Shear stress en
dc.subject.other Effect of poison ratios en
dc.subject.other Principal of shear axes en
dc.subject.other Shear center en
dc.subject.other Shear deformation coefficients en
dc.subject.other Transverse shear stresses en
dc.subject.other Beams and girders en
dc.title A BEM solution to transverse shear loading of beams en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00466-005-0677-2 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00466-005-0677-2 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In this paper a boundary element method is developed for the solution of the general transverse shear loading problem of beams of arbitrary simply or multiply connected constant cross section. The analysis of the beam is accomplished with respect to a coordinate system that has its origin at the centroid of the cross section, while its axes are not necessarily the principal ones. The transverse shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. Two boundary value problems that take into account the effect of Poisson's ratio are formulated with respect to stress functions and solved employing a pure BEM approach, that is only boundary discretization is used. The evaluation of the transverse shear stresses at any interior point is accomplished by direct differentiation of these stress functions, while both the coordinates of the shear center and the shear deformation coefficients are obtained from these functions using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The accuracy of the proposed shear deformation coefficients compared with those obtained from a 3-D FEM solution of the 'exact' elastic beam theory is remarkable. © Springer-Verlag 2005. en
heal.publisher SPRINGER en
heal.journalName Computational Mechanics en
dc.identifier.doi 10.1007/s00466-005-0677-2 en
dc.identifier.isi ISI:000231600200005 en
dc.identifier.volume 36 en
dc.identifier.issue 5 en
dc.identifier.spage 384 en
dc.identifier.epage 397 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής