HEAL DSpace

A BEM solution to transverse shear loading of composite beams

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mokos, VG en
dc.contributor.author Sapountzakis, EJ en
dc.date.accessioned 2014-03-01T01:21:42Z
dc.date.available 2014-03-01T01:21:42Z
dc.date.issued 2005 en
dc.identifier.issn 0020-7683 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16326
dc.subject Beam en
dc.subject Boundary element method en
dc.subject Composite en
dc.subject Effect of Poisson's ratio en
dc.subject Shear center en
dc.subject Shear deformation coefficients en
dc.subject Transverse shear stresses en
dc.subject.classification Mechanics en
dc.subject.other Boundary element method en
dc.subject.other Correlation methods en
dc.subject.other Differentiation (calculus) en
dc.subject.other Elastic moduli en
dc.subject.other Elasticity en
dc.subject.other Finite element method en
dc.subject.other Functions en
dc.subject.other Poisson ratio en
dc.subject.other Shear deformation en
dc.subject.other Shear stress en
dc.subject.other Structural loads en
dc.subject.other Effect of Poisson's ratio en
dc.subject.other Shear center en
dc.subject.other Shear deformation coefficients en
dc.subject.other Shear loading en
dc.subject.other Transverse shear stress en
dc.subject.other Composite beams and girders en
dc.title A BEM solution to transverse shear loading of composite beams en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.ijsolstr.2004.11.005 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.ijsolstr.2004.11.005 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In this paper a boundary element method is developed for the solution of the general transverse shear loading problem of composite beams of arbitrary constant cross-section. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. The analysis of the beam is accomplished with respect to a coordinate system that has its origin at the centroid of the cross-section, while its axes are not necessarily the principal ones. The transverse shear loading is applied at the shear centre of the cross-section, avoiding in this way the induction of a twisting moment. Two boundary value problems that take into account the effect of Poisson's ratio are formulated with respect to stress functions and solved employing a pure BEM approach, that is only boundary discretization is used. The evaluation of the transverse shear stresses is accomplished by direct differentiation of these stress functions, while both the coordinates of the shear center and the shear deformation coefficients are obtained from these functions using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The accuracy of the proposed shear deformation coefficients compared with those obtained from a 3-D FEM solution of the 'exact' elastic beam theory is remarkable. (C) 2004 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName International Journal of Solids and Structures en
dc.identifier.doi 10.1016/j.ijsolstr.2004.11.005 en
dc.identifier.isi ISI:000227536600012 en
dc.identifier.volume 42 en
dc.identifier.issue 11-12 en
dc.identifier.spage 3261 en
dc.identifier.epage 3287 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής