dc.contributor.author |
Argyros, SA |
en |
dc.contributor.author |
Lopez-Abad, J |
en |
dc.contributor.author |
Todorcevic, S |
en |
dc.date.accessioned |
2014-03-01T01:21:42Z |
|
dc.date.available |
2014-03-01T01:21:42Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0022-1236 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16328 |
|
dc.subject |
Diagonal operators |
en |
dc.subject |
Hereditarily indecomposable Banach spaces |
en |
dc.subject |
Reflexive Banach spaces |
en |
dc.subject |
Strictly singular operators |
en |
dc.subject |
Transfinite Schauder bases |
en |
dc.subject |
Unconditional basic sequences |
en |
dc.subject |
Uncountable codings |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
MIXED TSIRELSON SPACES |
en |
dc.subject.other |
SEQUENCE |
en |
dc.title |
A class of Banach spaces with few non-strictly singular operators |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.jfa.2004.11.001 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.jfa.2004.11.001 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
We construct a family (X-gamma) of reflexive Banach spaces with long (countable as well as uncountable) transfinite bases but with no unconditional basic sequences. The method we introduce to achieve this allows us to considerably control the structure of subspaces of the resulting spaces as well as to precisely describe the corresponding spaces on non-strictly singular operators. For example, for every pair of countable ordinals gamma, beta, we are able to decompose every bounded linear operator from X-gamma to X-beta as the sum of a diagonal operator and an strictly singular operator. We also show that every finite-dimensional subspace of any member X-gamma of our class can be moved by and (4 + epsilon)-isomorphism to essentially any region of any other member X-delta or our class. Finally, we find subspaces X of X-gamma such that the operator space L(X, X-gamma) is quite rich but any bounded operator T from X into X is a strictly singular pertubation of a scalar multiple of the identity. (c) 2004 Elsevier Inc. All rights reserved. |
en |
heal.publisher |
ACADEMIC PRESS INC ELSEVIER SCIENCE |
en |
heal.journalName |
Journal of Functional Analysis |
en |
dc.identifier.doi |
10.1016/j.jfa.2004.11.001 |
en |
dc.identifier.isi |
ISI:000228731500004 |
en |
dc.identifier.volume |
222 |
en |
dc.identifier.issue |
2 |
en |
dc.identifier.spage |
306 |
en |
dc.identifier.epage |
384 |
en |