HEAL DSpace

A coupled-mode model for the hydroelastic analysis of large floating bodies over variable bathymetry regions

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Belibassakis, KA en
dc.contributor.author Athanassoulis, GA en
dc.date.accessioned 2014-03-01T01:21:42Z
dc.date.available 2014-03-01T01:21:42Z
dc.date.issued 2005 en
dc.identifier.issn 0022-1120 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16331
dc.subject.classification Mechanics en
dc.subject.classification Physics, Fluids & Plasmas en
dc.subject.other Bathymetry en
dc.subject.other Boundary conditions en
dc.subject.other Ice en
dc.subject.other Mathematical models en
dc.subject.other Problem solving en
dc.subject.other Floating bodies en
dc.subject.other Hydroelastic analysis en
dc.subject.other Thin-elastic-plate theory en
dc.subject.other Wave fields en
dc.subject.other Hydroelasticity en
dc.subject.other Reynolds number en
dc.subject.other solitary wave en
dc.title A coupled-mode model for the hydroelastic analysis of large floating bodies over variable bathymetry regions en
heal.type journalArticle en
heal.identifier.primary 10.1017/S0022112005004003 en
heal.identifier.secondary http://dx.doi.org/10.1017/S0022112005004003 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The consistent coupled-mode theory (Athanassoulis & Belibassakis, J. Fluid Mech. vol. 389, 1999, p. 275) is extended and applied to the hydroelastic analysis of large floating bodies of shallow draught or ice sheets of small and uniform thickness, lying over variable bathymetry regions. A parallel-contour bathymetry is assumed, characterized by a continuous depth function of the form h(x, y) = h(x), attaining constant, but possibly different, values in the semi-infinite regions x < a and x > b. We consider the scattering problem of harmonic, obliquely incident, surface waves, under the combined effects of variable bathymetry and a floating elastic plate, extending from x = a to x = b and -∞ < y < ∞. Under the assumption of small-amplitude incident waves and small plate deflections, the hydroelastic problem is formulated within the context of linearized water-wave and thin-elastic-plate theory. The problem is reformulated as a transition problem in a bounded domain, for which an equivalent, Luke-type (unconstrained), variational principle is given. In order to consistently treat the wave field beneath the elastic floating plate, down to the sloping bottom boundary, a complete, local, hydroelastic-mode series expansion of the wave field is used, enhanced by an appropriate sloping-bottom mode. The latter enables the consistent satisfaction of the Neumann bottom-boundary condition on a general topography. By introducing this expansion into the variational principle, an equivalent coupled-mode system of horizontal equations in the plate region (a ≤ x ≤ b) is derived. Boundary conditions are also provided by the variational principle, ensuring the complete matching of the wave field at the vertical interfaces (x = a and x = b), and the requirements that the edges of the plate are free of moment and shear force. Numerical results concerning floating structures lying over flat, shoaling and corrugated seabeds are presented and compared, and the effects of wave direction, bottom slope and bottom corrugations on the hydroelastic response are presented and discussed. The present method can be easily extended to the fully three-dimensional hydroelastic problem, including bodies or structures characterized by variable thickness (draught), flexural rigidity and mass distributions. © 2005 Cambridge University Press. en
heal.publisher CAMBRIDGE UNIV PRESS en
heal.journalName Journal of Fluid Mechanics en
dc.identifier.doi 10.1017/S0022112005004003 en
dc.identifier.isi ISI:000230051000011 en
dc.identifier.volume 531 en
dc.identifier.spage 221 en
dc.identifier.epage 249 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής