dc.contributor.author |
Theotokoglou, EE |
en |
dc.contributor.author |
Paulino, GH |
en |
dc.date.accessioned |
2014-03-01T01:21:42Z |
|
dc.date.available |
2014-03-01T01:21:42Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.issn |
0376-9429 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/16332 |
|
dc.subject |
Coordinate System |
en |
dc.subject |
Fundamental Solution |
en |
dc.subject |
Integral Transforms |
en |
dc.subject |
Shear Modulus |
en |
dc.subject |
Stress Field |
en |
dc.subject.classification |
Mechanics |
en |
dc.subject.other |
Coatings |
en |
dc.subject.other |
Elastic moduli |
en |
dc.subject.other |
Fourier transforms |
en |
dc.subject.other |
Fracture mechanics |
en |
dc.subject.other |
Integral equations |
en |
dc.subject.other |
Interfaces (materials) |
en |
dc.subject.other |
Problem solving |
en |
dc.subject.other |
Strain |
en |
dc.subject.other |
Stresses |
en |
dc.subject.other |
Elastic coating |
en |
dc.subject.other |
Fourier integral transform method |
en |
dc.subject.other |
Homogeneous half plane |
en |
dc.subject.other |
Local coordinate systems |
en |
dc.subject.other |
Nonhomogeneous coating |
en |
dc.subject.other |
Plane stress conditions |
en |
dc.subject.other |
Structural coordinate system |
en |
dc.subject.other |
Cracks |
en |
dc.title |
A crack in the homogeneous half plane interacting with a crack at the interface between the nonhomogeneous coating and the homogeneous half-plane |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10704-005-0635-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10704-005-0635-1 |
en |
heal.language |
English |
en |
heal.publicationDate |
2005 |
en |
heal.abstract |
A fundamental solution is established for a crack in a homogeneous half-plane interacting with a crack at the interface between the homogeneous elastic half-plane and the nonhomogeneous elastic coating in which the shear modulus varies exponentially with one coordinate. The problem is solved under plane strain or generalized plane stress conditions using the Fourier integral transform method. The stress field in the homogeneous half plane is evaluated by the superposition of two states of stresses, one of which is associated with a local coordinate system in the infinite fractured plate, while the other one in the infinite half plane defined in a structural coordinate system. © Springer 2005. |
en |
heal.publisher |
SPRINGER |
en |
heal.journalName |
International Journal of Fracture |
en |
dc.identifier.doi |
10.1007/s10704-005-0635-1 |
en |
dc.identifier.isi |
ISI:000231954600006 |
en |
dc.identifier.volume |
134 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
L11 |
en |
dc.identifier.epage |
L18 |
en |