HEAL DSpace

A hierarchical fuzzy-clustering approach to fuzzy modeling

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Tsekouras, G en
dc.contributor.author Sarimveis, H en
dc.contributor.author Kavakli, E en
dc.contributor.author Bafas, G en
dc.date.accessioned 2014-03-01T01:21:43Z
dc.date.available 2014-03-01T01:21:43Z
dc.date.issued 2005 en
dc.identifier.issn 0165-0114 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16339
dc.subject Fuzzy basis functions en
dc.subject Nearest neighbor clustering en
dc.subject Optimal fuzzy clustering en
dc.subject Ordinary fuzzy partitions en
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.classification Mathematics, Applied en
dc.subject.classification Statistics & Probability en
dc.subject.other Algorithms en
dc.subject.other Data reduction en
dc.subject.other Error analysis en
dc.subject.other Estimation en
dc.subject.other Membership functions en
dc.subject.other State space methods en
dc.subject.other Fuzzy basis functions en
dc.subject.other Nearest neighbor clustering en
dc.subject.other Optimal fuzzy clustering en
dc.subject.other Ordinary fuzzy partitions en
dc.subject.other Fuzzy sets en
dc.title A hierarchical fuzzy-clustering approach to fuzzy modeling en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.fss.2004.04.013 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.fss.2004.04.013 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract This paper introduces a new method for fuzzy modeling based on a hierarchical fuzzy-clustering scheme. The method consists of a sequence of steps aiming towards developing a Takagi-Sugeno (TS) fuzzy model of optimal structure, where the fuzzy sets in the premise part are of Gaussian type. Starting from an initial ordinary fuzzy partition of the input space, the algorithm performs a nearest-neighbor search and groups the original input training data into a number of clusters. The centers of these clusters are further processed using an optimal fuzzy clustering technique, which is based on the weighted fuzzy c-means algorithm. The resulted optimal fuzzy partition defines the number of fuzzy rules and provides an initial estimation for the system parameters, which in a next step are fine tuned using the well-known gradient-descend algorithm. The proposed method is successfully applied to three test examples where the produced fuzzy models prove to be very accurate, as well as compact in size. (C) 2004 Elsevier B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName Fuzzy Sets and Systems en
dc.identifier.doi 10.1016/j.fss.2004.04.013 en
dc.identifier.isi ISI:000226447500004 en
dc.identifier.volume 150 en
dc.identifier.issue 2 en
dc.identifier.spage 245 en
dc.identifier.epage 266 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής