HEAL DSpace

A line up evolutionary algorithm for solving nonlinear constrained optimization problems

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sarimveis, H en
dc.contributor.author Nikolakopoulos, A en
dc.date.accessioned 2014-03-01T01:21:44Z
dc.date.available 2014-03-01T01:21:44Z
dc.date.issued 2005 en
dc.identifier.issn 0305-0548 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16342
dc.subject Constrained optimization en
dc.subject Evolutionary algorithms en
dc.subject Nonlinear programming en
dc.subject Penalty adaptation en
dc.subject.classification Computer Science, Interdisciplinary Applications en
dc.subject.classification Engineering, Industrial en
dc.subject.classification Operations Research & Management Science en
dc.subject.other Benchmarking en
dc.subject.other Evolutionary algorithms en
dc.subject.other Functions en
dc.subject.other Mathematical operators en
dc.subject.other Nonlinear programming en
dc.subject.other Optimization en
dc.subject.other Constrained optimization en
dc.subject.other Line-up differential evolution (LUDE) en
dc.subject.other Nonlinear programming problems (NLP) en
dc.subject.other Penalty adaptation en
dc.subject.other Problem solving en
dc.title A line up evolutionary algorithm for solving nonlinear constrained optimization problems en
heal.type journalArticle en
heal.identifier.primary 10.1016/j.cor.2003.11.015 en
heal.identifier.secondary http://dx.doi.org/10.1016/j.cor.2003.11.015 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract In this work a complete framework is presented for solving nonlinear constrained optimization problems. based on the line-up differential evolution (LUDE) algorithm which is proposed for solving unconstrained problems. Linear and/or nonlinear constraints are handled by embodying them in an augmented Lagrangian function, where the penalty parameters and multipliers are adapted as the execution of the algorithm proceeds. The LUDE algorithm maintains a population of solutions.. which is continuously improved as it thrives From generation to generation. In each generation the solutions are lined up according to the corresponding objective function values. The position's in the line are very important.. since they determine to What extent the crossover and the mutation operators are applied to each particular solution. The efficiency of the proposed methodoloy is illustrated by solving numerous unconstrained and constrained optimization problems and comparing it With other optimization techniques that can be found in the literature. (C) 2003 Elsevier Ltd. All rights reserved. en
heal.publisher PERGAMON-ELSEVIER SCIENCE LTD en
heal.journalName Computers and Operations Research en
dc.identifier.doi 10.1016/j.cor.2003.11.015 en
dc.identifier.isi ISI:000225907500007 en
dc.identifier.volume 32 en
dc.identifier.issue 6 en
dc.identifier.spage 1499 en
dc.identifier.epage 1514 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής