HEAL DSpace

A method for the direct evaluation of buckling loads of an imperfect two-bar frame

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ioannidis, GI en
dc.contributor.author Raftoyiannis, IG en
dc.contributor.author Kounadis, AN en
dc.date.accessioned 2014-03-01T01:21:44Z
dc.date.available 2014-03-01T01:21:44Z
dc.date.issued 2005 en
dc.identifier.issn 0939-1533 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16345
dc.subject Imperfect frames en
dc.subject Loading eccentricity en
dc.subject Nonlinear stability en
dc.subject.classification Mechanics en
dc.subject.other Asymptotic stability en
dc.subject.other Bifurcation (mathematics) en
dc.subject.other Degrees of freedom (mechanics) en
dc.subject.other Loads (forces) en
dc.subject.other Potential energy en
dc.subject.other Structural frames en
dc.subject.other Buckling loads en
dc.subject.other Imperfect frames en
dc.subject.other Loading eccentricity en
dc.subject.other Nonlinear stability en
dc.subject.other Buckling en
dc.title A method for the direct evaluation of buckling loads of an imperfect two-bar frame en
heal.type journalArticle en
heal.identifier.primary 10.1007/s00419-004-0352-7 en
heal.identifier.secondary http://dx.doi.org/10.1007/s00419-004-0352-7 en
heal.language English en
heal.publicationDate 2005 en
heal.abstract The pre-critical critical and post-critical nonlinear response of an imperfect due to loading eccentricity two-bar frame is thoroughly discussed. In seeking the maximum load-carrying capacity of this non-sway frame it was qualitatively established that its loss of stability occurs through a limit point and hence the case of an asymmetric bifurcation can be considered only in an asymptotic sense. After deriving the nonlinear equilibrium equations with unknowns for the two bar axial forces we can consider such a continuous system as a two-degree-of-freedom model with generalized coordinates the above axial forces. Then the equilibrium equations and the stability determinant of the frame can be determined in terms of the first and second derivatives of its total potential energy (TPE) with respect to the axial forces. The vanishing of the second variation of the TPE together with the equilibrium equations allows a simple and direct evaluation of the buckling load. Numerical examples demonstrate the efficiency and the reliability of the proposed method. © Springer-Verlag Berlin Heidelberg 2005. en
heal.publisher SPRINGER en
heal.journalName Archive of Applied Mechanics en
dc.identifier.doi 10.1007/s00419-004-0352-7 en
dc.identifier.isi ISI:000227555100001 en
dc.identifier.volume 74 en
dc.identifier.issue 5-6 en
dc.identifier.spage 299 en
dc.identifier.epage 308 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής