HEAL DSpace

A study of slope stability prediction using neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Sakellariou, MG en
dc.contributor.author Ferentinou, MD en
dc.date.accessioned 2014-03-01T01:21:46Z
dc.date.available 2014-03-01T01:21:46Z
dc.date.issued 2005 en
dc.identifier.issn 09603182 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/16363
dc.subject Artificial neural networks en
dc.subject Back-propagation en
dc.subject Factor of safety en
dc.subject Geotechnical parameters en
dc.subject Slope stability en
dc.subject Threshold logic units en
dc.subject.other Backpropagation en
dc.subject.other Computational methods en
dc.subject.other Geotechnical engineering en
dc.subject.other Mathematical models en
dc.subject.other Neural networks en
dc.subject.other Safety factor en
dc.subject.other Threshold logic en
dc.subject.other Geotechnical parameters en
dc.subject.other Slope stability prediction en
dc.subject.other Slope stability en
dc.subject.other artificial neural network en
dc.subject.other slope stability en
dc.title A study of slope stability prediction using neural networks en
heal.type journalArticle en
heal.identifier.primary 10.1007/s10706-004-8680-5 en
heal.identifier.secondary http://dx.doi.org/10.1007/s10706-004-8680-5 en
heal.publicationDate 2005 en
heal.abstract The determination of the non-linear behaviour of multivariate dynamic systems often presents a challenging and demanding problem. Slope stability estimation is an engineering problem that involves several parameters. The impact of these parameters on the stability of slopes is investigated through the use of computational tools called neural networks. A number of networks of threshold logic unit were tested, with adjustable weights. The computational method for the training process was a back-propagation learning algorithm. In this paper, the input data for slope stability estimation consist of values of geotechnical and geometrical input parameters. As an output, the network estimates the factor of safety (FS) that can be modelled as a function approximation problem, or the stability status (S) that can be modelled either as a function approximation problem or as a classification model. The performance of the network is measured and the results are compared to those obtained by means of standard analytical methods. Furthermore, the relative importance of the parameters is studied using the method of the partitioning of weights and compared to the results obtained through the use of Index Information Theory. © Springer 2005. en
heal.journalName Geotechnical and Geological Engineering en
dc.identifier.doi 10.1007/s10706-004-8680-5 en
dc.identifier.volume 23 en
dc.identifier.issue 4 en
dc.identifier.spage 419 en
dc.identifier.epage 445 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής